| version 1.3, 2000/02/28 14:10:30 |
version 1.4, 2001/04/12 06:48:27 |
|
|
| /* $OpenXM: OpenXM/src/kan96xx/Kan/Kclass/indeterminate.c,v 1.2 2000/01/16 07:55:45 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/kan96xx/Kan/Kclass/indeterminate.c,v 1.3 2000/02/28 14:10:30 takayama Exp $ */ |
| /* Kclass/indeterminate.c */ |
/* Kclass/indeterminate.c */ |
| /* This file handles indeterminate, tree, recursivePolynomial, |
/* This file handles indeterminate, tree, recursivePolynomial, |
| polynomialInOneVariable |
polynomialInOneVariable |
| Line 182 static void printBodyOfRecursivePolynomial(struct obj |
|
| Line 182 static void printBodyOfRecursivePolynomial(struct obj |
|
| for (j=1; j<getoaSize(body); j = j+2) { |
for (j=1; j<getoaSize(body); j = j+2) { |
| k = KopInteger(getoa(body,j)); |
k = KopInteger(getoa(body,j)); |
| if (k != 0) { |
if (k != 0) { |
| fprintf(fp,"%s",KopString(getoa(vlist,i))); |
if (getoa(vlist,i).tag == Sdollar) { |
| |
fprintf(fp,"%s",KopString(getoa(vlist,i))); |
| |
}else if (ectag(getoa(vlist,i)) == CLASSNAME_tree) { |
| |
fprintClass(fp,getoa(vlist,i)); |
| |
}else{ |
| |
errorKan1("%s\n","printBodyOfRecursivePolynomial: format error."); |
| |
} |
| if (k > 1) { |
if (k > 1) { |
| fprintf(fp,"^%d ",k); |
fprintf(fp,"^%d ",k); |
| }else if (k == 1) { |
}else if (k == 1) { |
| Line 435 int isRecursivePolynomial2(struct object ob) { |
|
| Line 441 int isRecursivePolynomial2(struct object ob) { |
|
| n = getoaSize(ob1); |
n = getoaSize(ob1); |
| for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
| tmp = getoa(ob1,i); |
tmp = getoa(ob1,i); |
| if (tmp.tag != Sdollar) { |
if (tmp.tag == Sdollar) { |
| fprintf(stderr,"%s [list vlist, body]. Element of the vlist must be a string.\n",s); printObject(ob,1,stderr); |
}else if (ectag(tmp) == CLASSNAME_tree) { |
| |
}else{ |
| |
fprintf(stderr,"%s [list vlist, body]. Element of the vlist must be a string or a tree.\n",s); printObject(ob,1,stderr); |
| return(0); |
return(0); |
| } |
} |
| } |
} |
| Line 478 struct object recursivePolyToPoly(struct object rp) { |
|
| Line 486 struct object recursivePolyToPoly(struct object rp) { |
|
| } |
} |
| |
|
| |
|
| |
struct object KrvtReplace(struct object rp_o,struct object v_o, struct object t_o) { |
| |
/* rp_o : recursive polynomial. |
| |
v_o : variable name (indeterminate). |
| |
t_o : tree. |
| |
*/ |
| |
struct object rp, vlist, newvlist, newrp; |
| |
int i,m; |
| |
/* Check the data types. */ |
| |
if (ectag(rp_o) != CLASSNAME_recursivePolynomial) { |
| |
errorKan1("%s\n","KrvtReplace() type mismatch in the first argument."); |
| |
} |
| |
if (ectag(v_o) != CLASSNAME_indeterminate) { |
| |
errorKan1("%s\n","KrvtReplace() type mismatch in the second argument."); |
| |
} |
| |
if (ectag(t_o) != CLASSNAME_tree) { |
| |
errorKan1("%s\n","KrvtReplace() type mismatch in the third argument."); |
| |
} |
| |
|
| |
rp = KopRecursivePolynomial(rp_o); |
| |
vlist = getoa(rp,0); |
| |
m = getoaSize(vlist); |
| |
newvlist = newObjectArray(m); |
| |
for (i=0; i<m; i++) { |
| |
if (KooEqualQ(getoa(vlist,i),KopIndeterminate(v_o))) { |
| |
/* should be KooEqualQ(getoa(vlist,i),v_o). It's not a bug. |
| |
Internal expression of vlist is an array of string |
| |
(not indetermiante). */ |
| |
putoa(newvlist,i,t_o); |
| |
}else{ |
| |
putoa(newvlist,i,getoa(vlist,i)); |
| |
} |
| |
} |
| |
newrp = newObjectArray(getoaSize(rp)); |
| |
m = getoaSize(rp); |
| |
putoa(newrp,0,newvlist); |
| |
for (i=1; i<m; i++) { |
| |
putoa(newrp,i,getoa(rp,i)); |
| |
} |
| |
return(KpoRecursivePolynomial(newrp)); |
| |
} |
| |
|
| |
|
| |
struct object KreplaceRecursivePolynomial(struct object of,struct object rule) { |
| |
struct object rob,f; |
| |
int i; |
| |
int n; |
| |
struct object trule; |
| |
|
| |
|
| |
if (rule.tag != Sarray) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be array."); |
| |
} |
| |
n = getoaSize(rule); |
| |
|
| |
if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) { |
| |
}else{ |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The first argument must be a recursive polynomial."); |
| |
} |
| |
f = of; |
| |
|
| |
for (i=0; i<n; i++) { |
| |
trule = getoa(rule,i); |
| |
if (trule.tag != Sarray) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....]."); |
| |
} |
| |
if (getoaSize(trule) != 2) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....]."); |
| |
} |
| |
|
| |
if (ectag(getoa(trule,0)) != CLASSNAME_indeterminate) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials."); |
| |
} |
| |
/* Do not check the second argument. */ |
| |
/* |
| |
if (getoa(trule,1).tag != Spoly) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials."); |
| |
} |
| |
*/ |
| |
|
| |
} |
| |
|
| |
rob = f; |
| |
for (i=0; i<n; i++) { |
| |
trule = getoa(rule,i); |
| |
rob = KrvtReplace(rob,getoa(trule,0),getoa(trule,1)); |
| |
} |
| |
return(rob); |
| |
} |
| |
|