| version 1.1, 1999/10/08 02:12:02 |
version 1.6, 2001/09/01 01:37:48 |
|
|
| |
/* $OpenXM: OpenXM/src/kan96xx/Kan/Kclass/indeterminate.c,v 1.5 2001/05/04 01:06:29 takayama Exp $ */ |
| /* Kclass/indeterminate.c */ |
/* Kclass/indeterminate.c */ |
| /* This file handles indeterminate, tree, recursivePolynomial, |
/* This file handles indeterminate, tree, recursivePolynomial, |
| polynomialInOneVariable |
polynomialInOneVariable |
| Line 60 struct object KpoTree(struct object ob) { |
|
| Line 61 struct object KpoTree(struct object ob) { |
|
| errorKan1("%s\n","Kclass/indeterminate.c, the length must 3 or more than 3. [name, cdname, arglist]."); |
errorKan1("%s\n","Kclass/indeterminate.c, the length must 3 or more than 3. [name, cdname, arglist]."); |
| } |
} |
| ob1 = getoa(ob,0); ob2 = getoa(ob,1); ob3 = getoa(ob,2); |
ob1 = getoa(ob,0); ob2 = getoa(ob,1); ob3 = getoa(ob,2); |
| if (ob1.tag != Sdollar || ob2.tag != Sdollar || ob3.tag != Sarray) { |
if (ob1.tag != Sdollar || ob2.tag != Sarray || ob3.tag != Sarray) { |
| errorKan1("%s\n","Kclass/indeterminate.c, [string name, string cdname, list arglist]."); |
errorKan1("%s\n","Kclass/indeterminate.c, [string name, list attributes, list arglist]."); |
| } |
} |
| *newobp = ob; |
*newobp = ob; |
| rob.rc.voidp = newobp; |
rob.rc.voidp = newobp; |
| Line 138 struct object addTree(struct object ob1, struct object |
|
| Line 139 struct object addTree(struct object ob1, struct object |
|
| } |
} |
| rob = newObjectArray(3); |
rob = newObjectArray(3); |
| putoa(rob,0,KpoString("add")); |
putoa(rob,0,KpoString("add")); |
| putoa(rob,1,KpoString("Basic")); |
putoa(rob,1,KpoString("basic")); |
| putoa(rob,2,aob); |
putoa(rob,2,aob); |
| return(KpoTree(rob)); |
return(KpoTree(rob)); |
| } |
} |
| Line 162 struct object KpoRecursivePolynomial(struct object ob) |
|
| Line 163 struct object KpoRecursivePolynomial(struct object ob) |
|
| } |
} |
| |
|
| static void printBodyOfRecursivePolynomial(struct object body, |
static void printBodyOfRecursivePolynomial(struct object body, |
| struct object vlist, FILE *fp) |
struct object vlist, FILE *fp) |
| { |
{ |
| int i,j; |
int i,j; |
| int k; |
int k; |
| Line 181 static void printBodyOfRecursivePolynomial(struct obj |
|
| Line 182 static void printBodyOfRecursivePolynomial(struct obj |
|
| for (j=1; j<getoaSize(body); j = j+2) { |
for (j=1; j<getoaSize(body); j = j+2) { |
| k = KopInteger(getoa(body,j)); |
k = KopInteger(getoa(body,j)); |
| if (k != 0) { |
if (k != 0) { |
| fprintf(fp,"%s",KopString(getoa(vlist,i))); |
if (getoa(vlist,i).tag == Sdollar) { |
| |
fprintf(fp,"%s",KopString(getoa(vlist,i))); |
| |
}else if (ectag(getoa(vlist,i)) == CLASSNAME_tree) { |
| |
fprintClass(fp,getoa(vlist,i)); |
| |
}else{ |
| |
errorKan1("%s\n","printBodyOfRecursivePolynomial: format error."); |
| |
} |
| if (k > 1) { |
if (k > 1) { |
| fprintf(fp,"^%d ",k); |
fprintf(fp,"^%d ",k); |
| }else if (k == 1) { |
}else if (k == 1) { |
| }else{ |
}else{ |
| fprintf(fp,"^(%d) ",k); |
fprintf(fp,"^(%d) ",k); |
| } |
} |
| fprintf(fp," * "); |
fprintf(fp," * "); |
| } |
} |
| Line 203 static void printBodyOfRecursivePolynomial(struct obj |
|
| Line 210 static void printBodyOfRecursivePolynomial(struct obj |
|
| void fprintRecursivePolynomial(FILE *fp,struct object op) |
void fprintRecursivePolynomial(FILE *fp,struct object op) |
| { |
{ |
| /* old code |
/* old code |
| printObject(KopRecursivePolynomial(op),0,fp); return; |
printObject(KopRecursivePolynomial(op),0,fp); return; |
| */ |
*/ |
| struct object ob; |
struct object ob; |
| struct object vlist; |
struct object vlist; |
| Line 297 struct object polyToRecursivePoly(struct object p) { |
|
| Line 304 struct object polyToRecursivePoly(struct object p) { |
|
| putoa(rob,0,vlist2); putoa(rob,1,ob1); |
putoa(rob,0,vlist2); putoa(rob,1,ob1); |
| /* format of rob |
/* format of rob |
| [ list of variables, poly or universalNumber or yyy to express |
[ list of variables, poly or universalNumber or yyy to express |
| a recursive polynomial. ] |
a recursive polynomial. ] |
| format of yyy = CLASSNAME_polynomialInOneVariable |
format of yyy = CLASSNAME_polynomialInOneVariable |
| [Sinteger, Sinteger, coeff obj, Sinteger, coeff obj, .....] |
[Sinteger, Sinteger, coeff obj, Sinteger, coeff obj, .....] |
| name of var, exp, coeff, exp, coeff |
name of var, exp, coeff, exp, coeff |
| This format is checked by isRecursivePolynomial2(). |
This format is checked by isRecursivePolynomial2(). |
| */ |
*/ |
| rob = KpoRecursivePolynomial(rob); |
rob = KpoRecursivePolynomial(rob); |
| if (isRecursivePolynomial2(rob)) { |
if (isRecursivePolynomial2(rob)) { |
| Line 398 static int isRecursivePolynomial2a(struct object ob2, |
|
| Line 405 static int isRecursivePolynomial2a(struct object ob2, |
|
| if (ectag(tmp) == CLASSNAME_polynomialInOneVariable) { |
if (ectag(tmp) == CLASSNAME_polynomialInOneVariable) { |
| if (isRecursivePolynomial2a(tmp,n)) { |
if (isRecursivePolynomial2a(tmp,n)) { |
| }else{ |
}else{ |
| fprintf(stderr,"isRecursivePolynomial2a: entry is not a polynomial in one variable.\n"); |
fprintf(stderr,"isRecursivePolynomial2a: entry is not a polynomial in one variable.\n"); |
| printObject(tmp,0,stderr); fprintf(stderr,"\n"); |
printObject(tmp,0,stderr); fprintf(stderr,"\n"); |
| return(0); |
return(0); |
| } |
} |
| } |
} |
| } |
} |
| Line 434 int isRecursivePolynomial2(struct object ob) { |
|
| Line 441 int isRecursivePolynomial2(struct object ob) { |
|
| n = getoaSize(ob1); |
n = getoaSize(ob1); |
| for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
| tmp = getoa(ob1,i); |
tmp = getoa(ob1,i); |
| if (tmp.tag != Sdollar) { |
if (tmp.tag == Sdollar) { |
| fprintf(stderr,"%s [list vlist, body]. Element of the vlist must be a string.\n",s); printObject(ob,1,stderr); |
}else if (ectag(tmp) == CLASSNAME_tree) { |
| |
}else{ |
| |
fprintf(stderr,"%s [list vlist, body]. Element of the vlist must be a string or a tree.\n",s); printObject(ob,1,stderr); |
| return(0); |
return(0); |
| } |
} |
| } |
} |
| Line 477 struct object recursivePolyToPoly(struct object rp) { |
|
| Line 486 struct object recursivePolyToPoly(struct object rp) { |
|
| } |
} |
| |
|
| |
|
| |
struct object KrvtReplace(struct object rp_o,struct object v_o, struct object t_o) { |
| |
/* rp_o : recursive polynomial. |
| |
v_o : variable name (indeterminate). |
| |
t_o : tree. |
| |
*/ |
| |
struct object rp, vlist, newvlist, newrp; |
| |
int i,m; |
| |
/* Check the data types. */ |
| |
if (ectag(rp_o) != CLASSNAME_recursivePolynomial) { |
| |
errorKan1("%s\n","KrvtReplace() type mismatch in the first argument."); |
| |
} |
| |
if (ectag(v_o) != CLASSNAME_indeterminate) { |
| |
errorKan1("%s\n","KrvtReplace() type mismatch in the second argument."); |
| |
} |
| |
if (ectag(t_o) != CLASSNAME_tree) { |
| |
errorKan1("%s\n","KrvtReplace() type mismatch in the third argument."); |
| |
} |
| |
|
| |
rp = KopRecursivePolynomial(rp_o); |
| |
vlist = getoa(rp,0); |
| |
m = getoaSize(vlist); |
| |
newvlist = newObjectArray(m); |
| |
for (i=0; i<m; i++) { |
| |
if (KooEqualQ(getoa(vlist,i),KopIndeterminate(v_o))) { |
| |
/* should be KooEqualQ(getoa(vlist,i),v_o). It's not a bug. |
| |
Internal expression of vlist is an array of string |
| |
(not indetermiante). */ |
| |
putoa(newvlist,i,t_o); |
| |
}else{ |
| |
putoa(newvlist,i,getoa(vlist,i)); |
| |
} |
| |
} |
| |
newrp = newObjectArray(getoaSize(rp)); |
| |
m = getoaSize(rp); |
| |
putoa(newrp,0,newvlist); |
| |
for (i=1; i<m; i++) { |
| |
putoa(newrp,i,getoa(rp,i)); |
| |
} |
| |
return(KpoRecursivePolynomial(newrp)); |
| |
} |
| |
|
| |
|
| |
struct object KreplaceRecursivePolynomial(struct object of,struct object rule) { |
| |
struct object rob,f; |
| |
int i; |
| |
int n; |
| |
struct object trule; |
| |
|
| |
|
| |
if (rule.tag != Sarray) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be array."); |
| |
} |
| |
n = getoaSize(rule); |
| |
|
| |
if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) { |
| |
}else{ |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The first argument must be a recursive polynomial."); |
| |
} |
| |
f = of; |
| |
|
| |
for (i=0; i<n; i++) { |
| |
trule = getoa(rule,i); |
| |
if (trule.tag != Sarray) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....]."); |
| |
} |
| |
if (getoaSize(trule) != 2) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....]."); |
| |
} |
| |
|
| |
if (ectag(getoa(trule,0)) != CLASSNAME_indeterminate) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials."); |
| |
} |
| |
/* Do not check the second argument. */ |
| |
/* |
| |
if (getoa(trule,1).tag != Spoly) { |
| |
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials."); |
| |
} |
| |
*/ |
| |
|
| |
} |
| |
|
| |
rob = f; |
| |
for (i=0; i<n; i++) { |
| |
trule = getoa(rule,i); |
| |
rob = KrvtReplace(rob,getoa(trule,0),getoa(trule,1)); |
| |
} |
| |
return(rob); |
| |
} |
| |
|