| version 1.1, 2000/12/14 13:18:41 |
version 1.7, 2001/01/26 12:24:57 |
|
|
| /* $OpenXM$ */ |
/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.6 2001/01/05 11:14:29 takayama Exp $ */ |
| |
|
| load["restriction.k"];; |
load["restriction.k"];; |
| load("../ox/ox.k");; |
load("../ox/ox.k");; |
| Line 6 load("../ox/ox.k");; |
|
| Line 6 load("../ox/ox.k");; |
|
| def demoSendAsirCommand(a) { |
def demoSendAsirCommand(a) { |
| a.executeString("load(\"bfct\");"); |
a.executeString("load(\"bfct\");"); |
| a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
| |
a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
| a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; "); |
a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; "); |
| |
a.executeString(" def mygeneric_bfct(F,VV,DD,WW) { print([F,VV,DD,WW]); return(generic_bfct(F,VV,DD,WW));}; "); |
| } |
} |
| |
|
| as = startAsir(); |
if (Boundp("NoX")) { |
| |
as = Asir.generate(false); |
| |
}else{ |
| |
as = Asir.generate(); |
| |
} |
| |
|
| asssssir = as; |
asssssir = as; |
| demoSendAsirCommand(as); |
demoSendAsirCommand(as); |
| RingD("x,y,z,s"); |
RingD("x,y,z,s"); |
| Line 31 def asirAnnfsXYZ(a,f) { |
|
| Line 38 def asirAnnfsXYZ(a,f) { |
|
| return(b); |
return(b); |
| } |
} |
| |
|
| |
|
| |
def asir_generic_bfct(a,ii,vv,dd,ww) { |
| |
local ans; |
| |
ans = a.rpc_str("mygeneric_bfct",[ii,vv,dd,ww]); |
| |
return(ans); |
| |
} |
| |
/* a=startAsir(); |
| |
asir_generic_bfct(a,[Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */ |
| |
|
| |
/* usage: misc/tmp/complex-ja.texi */ |
| |
def ChangeRing(f) { |
| |
local r; |
| |
r = GetRing(f); |
| |
if (Tag(r) == 14) { |
| |
SetRing(r); |
| |
return(true); |
| |
}else{ |
| |
return(false); |
| |
} |
| |
} |
| |
|
| |
def asir_BfRoots2(G) { |
| |
local bb,ans,ss; |
| |
sm1(" G flatten {dehomogenize} map /G set "); |
| |
ChangeRing(G); |
| |
ss = asir_generic_bfct(asssssir,G,[x,y],[Dx,Dy],[1,1]); |
| |
bb = [ss]; |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
def asir_BfRoots3(G) { |
| |
local bb,ans,ss; |
| |
sm1(" G flatten {dehomogenize} map /G set "); |
| |
ChangeRing(G); |
| |
ss = asir_generic_bfct(asssssir,G,[x,y,z],[Dx,Dy,Dz],[1,1,1]); |
| |
bb = [ss]; |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
|
| def findMinSol(f) { |
def findMinSol(f) { |
| sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
| } |
} |
| Line 49 def asirAnnXYZ(a,f) { |
|
| Line 96 def asirAnnXYZ(a,f) { |
|
| return(b); |
return(b); |
| } |
} |
| |
|
| |
|
| def nonquasi2(p,q) { |
def nonquasi2(p,q) { |
| local s,ans,f; |
local s,ans,f; |
| |
|
| |
sm1("0 set_timer "); sm1(" oxNoX "); |
| |
asssssir.OnTimer(); |
| |
|
| f = x^p+y^q+x*y^(q-1); |
f = x^p+y^q+x*y^(q-1); |
| Print("f=");Println(f); |
Print("f=");Println(f); |
| s = ToString(f); |
s = ToString(f); |
| Line 65 def nonquasi2(p,q) { |
|
| Line 117 def nonquasi2(p,q) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
| |
R = asir_BfRoots2(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |
| Ans=Srestall(Res0, ["x", "y"], ["x", "y"], R0[Length(R0)-1]); |
Ans=Srestall(Res0, ["x", "y"], ["x", "y"], R0[Length(R0)-1]); |
| |
|
| |
Println("Timing data: sm1 "); sm1(" 1 set_timer "); |
| |
Print(" ox_asir [CPU,GC]: ");Println(asssssir.OffTimer()); |
| |
|
| Print("Answer is "); Println(Ans[0]); |
Print("Answer is "); Println(Ans[0]); |
| return(Ans); |
return(Ans); |
| } |
} |
| |
|
| |
def asirAnn0XYZ(a,f) { |
| |
local p,b,b0; |
| |
RingD("x,y,z,s"); /* Fix!! See the definition of myann() */ |
| |
p = ToString(f); |
| |
b = a.rpc("myann0",[p]); |
| |
Print("Annhilating ideal of f^r is "); Println(b); |
| |
return(b); |
| |
} |
| |
|
| |
def DeRham2WithAsir(f) { |
| |
local s; |
| |
|
| |
sm1("0 set_timer "); sm1(" oxNoX "); |
| |
asssssir.OnTimer(); |
| |
|
| |
s = ToString(f); |
| |
II = asirAnn0XYZ(asssssir,f); |
| |
Print("Step 1: Annhilating ideal (II)"); Println(II); |
| |
sm1(" II { [(x) (y) (Dx) (Dy) ] laplace0 } map /II set "); |
| |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| |
pp = Map(II,"Spoly"); |
| |
Res = Sminimal(pp); |
| |
Res0 = Res[0]; |
| |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| |
/* R = BfRoots1(Res0[0],"x,y"); */ |
| |
R = asir_BfRoots2(Res0[0]); |
| |
Println("Step3: computing the cohomology of the truncated complex."); |
| |
Print("Roots and b-function are "); Println(R); |
| |
R0 = R[0]; |
| |
Ans=Srestall(Res0, ["x", "y"], ["x", "y"],R0[Length(R0)-1] ); |
| |
|
| |
Println("Timing data: sm1 "); sm1(" 1 set_timer "); |
| |
Print(" ox_asir [CPU,GC]: ");Println(asssssir.OffTimer()); |
| |
|
| |
Print("Answer is ");Println(Ans[0]); |
| |
return(Ans); |
| |
} |
| |
def DeRham3WithAsir(f) { |
| |
local s; |
| |
|
| |
sm1("0 set_timer "); sm1(" oxNoX "); |
| |
asssssir.OnTimer(); |
| |
|
| |
s = ToString(f); |
| |
II = asirAnn0XYZ(asssssir,f); |
| |
Print("Step 1: Annhilating ideal (II)"); Println(II); |
| |
sm1(" II { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /II set "); |
| |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| |
pp = Map(II,"Spoly"); |
| |
Res = Sminimal(pp); |
| |
Res0 = Res[0]; |
| |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| |
/* R = BfRoots1(Res0[0],"x,y,z"); */ |
| |
R = asir_BfRoots3(Res0[0]); |
| |
Println("Step3: computing the cohomology of the truncated complex."); |
| |
Print("Roots and b-function are "); Println(R); |
| |
R0 = R[0]; |
| |
Ans=Srestall(Res0, ["x", "y", "z"], ["x", "y", "z"],R0[Length(R0)-1] ); |
| |
|
| |
Println("Timing data: sm1 "); sm1(" 1 set_timer "); |
| |
Print(" ox_asir [CPU,GC]: ");Println(asssssir.OffTimer()); |
| |
|
| |
Print("Answer is ");Println(Ans[0]); |
| |
return(Ans); |
| |
} |
| |
|
| |
/* test data |
| |
|
| |
NoX=true; |
| |
nonquasi2(4,5); |
| |
nonquasi2(4,6); |
| |
nonquasi2(4,7); |
| |
nonquasi2(4,8); |
| |
nonquasi2(4,9); |
| |
nonquasi2(4,10); |
| |
|
| |
nonquasi2(5,6); |
| |
nonquasi2(6,7); |
| |
nonquasi2(7,8); |
| |
nonquasi2(8,9); |
| |
nonquasi2(9,10); |
| |
*/ |
| |
|
| |
P2 = [ |
| |
"x^3-y^2", |
| |
"y^2-x^3-x-1", |
| |
"y^2-x^5-x-1", |
| |
"y^2-x^7-x-1", |
| |
"y^2-x^9-x-1", |
| |
"y^2-x^11-x-1" |
| |
]; |
| |
|
| |
P3 = [ |
| |
"x^3-y^2*z^2", |
| |
"x^2*z+y^3+y^2*z+z^3", |
| |
"y*z^2+x^3+x^2*y^2+y^6", |
| |
"x*z^2+x^2*y+x*y^3+y^5" |
| |
]; |
| |
|
| |
|
| |
|