[BACK]Return to demo.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / restriction

Diff for /OpenXM/src/k097/lib/restriction/demo.k between version 1.1 and 1.5

version 1.1, 2000/12/14 13:18:41 version 1.5, 2000/12/28 00:08:14
Line 1 
Line 1 
 /* $OpenXM$  */  /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.4 2000/12/27 10:16:13 takayama Exp $  */
   
 load["restriction.k"];;  load["restriction.k"];;
 load("../ox/ox.k");;  load("../ox/ox.k");;
Line 6  load("../ox/ox.k");;
Line 6  load("../ox/ox.k");;
 def demoSendAsirCommand(a) {  def demoSendAsirCommand(a) {
   a.executeString("load(\"bfct\");");    a.executeString("load(\"bfct\");");
   a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");    a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");
     a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");
   a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; ");    a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; ");
     a.executeString(" def mygeneric_bfct(F,VV,DD,WW) { print([F,VV,DD,WW]); return(generic_bfct(F,VV,DD,WW));}; ");
 }  }
   
 as = startAsir();  as = startAsir();
Line 31  def asirAnnfsXYZ(a,f) {
Line 33  def asirAnnfsXYZ(a,f) {
   return(b);    return(b);
 }  }
   
   
   def asir_generic_bfct(a,ii,vv,dd,ww) {
      local ans;
      ans = a.rpc_str("mygeneric_bfct",[ii,vv,dd,ww]);
      return(ans);
   }
   /* a=startAsir();
      asir_generic_bfct(a,[Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */
   
   /* usage: misc/tmp/complex-ja.texi */
   def changeRing(f) {
     local r;
     r = GetRing(f);
     if (Tag(r) == 14) {
       SetRing(r);
       return(true);
     }else{
       return(false);
     }
   }
   
   def asir_BfRoots2(G) {
      local bb,ans,ss;
      sm1(" G flatten {dehomogenize} map /G set ");
      changeRing(G);
      ss = asir_generic_bfct(asssssir,G,[x,y],[Dx,Dy],[1,1]);
      bb = [ss];
      sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
      return([ans, bb]);
   }
   def asir_BfRoots3(G) {
      local bb,ans,ss;
      sm1(" G flatten {dehomogenize} map /G set ");
      changeRing(G);
      ss = asir_generic_bfct(asssssir,G,[x,y,z],[Dx,Dy,Dz],[1,1,1]);
      bb = [ss];
      sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
      return([ans, bb]);
   }
   
 def findMinSol(f) {  def findMinSol(f) {
   sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set ");    sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set ");
 }  }
Line 49  def asirAnnXYZ(a,f) {
Line 91  def asirAnnXYZ(a,f) {
   return(b);    return(b);
 }  }
   
   
 def nonquasi2(p,q) {  def nonquasi2(p,q) {
   local s,ans,f;    local s,ans,f;
   f = x^p+y^q+x*y^(q-1);    f = x^p+y^q+x*y^(q-1);
Line 65  def nonquasi2(p,q) {
Line 108  def nonquasi2(p,q) {
   Res = Sminimal(pp);    Res = Sminimal(pp);
   Res0 = Res[0];    Res0 = Res[0];
   Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);    Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
   R = BfRoots1(Res0[0],"x,y");  /*  R = BfRoots1(Res0[0],"x,y"); */
     R = asir_BfRoots2(Res0[0]);
   Println("Step3: computing the cohomology of the truncated complex.");    Println("Step3: computing the cohomology of the truncated complex.");
   Print("Roots and b-function are "); Println(R);    Print("Roots and b-function are "); Println(R);
   R0 = R[0];    R0 = R[0];
   Ans=Srestall(Res0, ["x", "y"],  ["x", "y"], R0[Length(R0)-1]);    Ans=Srestall(Res0, ["x", "y"],  ["x", "y"], R0[Length(R0)-1]);
   Print("Answer is "); Println(Ans[0]);    Print("Answer is "); Println(Ans[0]);
     return(Ans);
   }
   
   def asirAnn0XYZ(a,f) {
     local p,b,b0;
     RingD("x,y,z,s");  /* Fix!! See the definition of myann() */
     p = ToString(f);
     b = a.rpc("myann0",[p]);
     Print("Annhilating ideal of f^r is "); Println(b);
     return(b);
   }
   
   def DeRham2WithAsir(f) {
     local s;
     s = ToString(f);
     II = asirAnn0XYZ(asssssir,f);
     Print("Step 1: Annhilating ideal (II)"); Println(II);
     sm1(" II  { [(x) (y) (Dx) (Dy) ] laplace0 } map /II set ");
     Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
     pp = Map(II,"Spoly");
     Res = Sminimal(pp);
     Res0 = Res[0];
     Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
     /* R = BfRoots1(Res0[0],"x,y"); */
     R = asir_BfRoots2(Res0[0]);
     Println("Step3: computing the cohomology of the truncated complex.");
     Print("Roots and b-function are "); Println(R);
     R0 = R[0];
     Ans=Srestall(Res0, ["x", "y"],  ["x", "y"],R0[Length(R0)-1] );
     Print("Answer is ");Println(Ans[0]);
     return(Ans);
   }
   def DeRham3WithAsir(f) {
     local s;
     s = ToString(f);
     II = asirAnn0XYZ(asssssir,f);
     Print("Step 1: Annhilating ideal (II)"); Println(II);
     sm1(" II  { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /II set ");
     Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
     pp = Map(II,"Spoly");
     Res = Sminimal(pp);
     Res0 = Res[0];
     Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
     /* R = BfRoots1(Res0[0],"x,y,z");  */
     R = asir_BfRoots3(Res0[0]);
     Println("Step3: computing the cohomology of the truncated complex.");
     Print("Roots and b-function are "); Println(R);
     R0 = R[0];
     Ans=Srestall(Res0, ["x", "y", "z"],  ["x", "y", "z"],R0[Length(R0)-1] );
     Print("Answer is ");Println(Ans[0]);
   return(Ans);    return(Ans);
 }  }

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.5

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>