| version 1.2, 2000/12/15 02:44:32 |
version 1.4, 2000/12/27 10:16:13 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.1 2000/12/14 13:18:41 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.3 2000/12/27 08:09:27 takayama Exp $ */ |
| |
|
| load["restriction.k"];; |
load["restriction.k"];; |
| load("../ox/ox.k");; |
load("../ox/ox.k");; |
| Line 8 def demoSendAsirCommand(a) { |
|
| Line 8 def demoSendAsirCommand(a) { |
|
| a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
| a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); |
| a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; "); |
a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; "); |
| |
a.executeString(" def mygeneric_bfct(F,VV,DD,WW) { print([F,VV,DD,WW]); return(generic_bfct(F,VV,DD,WW));}; "); |
| } |
} |
| |
|
| as = startAsir(); |
as = startAsir(); |
| Line 32 def asirAnnfsXYZ(a,f) { |
|
| Line 33 def asirAnnfsXYZ(a,f) { |
|
| return(b); |
return(b); |
| } |
} |
| |
|
| |
|
| |
def asir_generic_bfct(a,ii,vv,dd,ww) { |
| |
local ans; |
| |
ans = a.rpc_str("mygeneric_bfct",[ii,vv,dd,ww]); |
| |
return(ans); |
| |
} |
| |
/* a=startAsir(); |
| |
asir_generic_bfct(a,[Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */ |
| |
|
| |
/* usage: misc/tmp/complex-ja.texi */ |
| |
def changeRing(F) { |
| |
local n,i,f; |
| |
if (IsArray(F)) { |
| |
n = Length(F); |
| |
for (i=0; i<n; i++) { |
| |
if (IsArray(F[i])) { |
| |
if (changeRing(F)) return(true); |
| |
}else if (IsPolynomial(F[i])) { |
| |
if (F[i] != Poly("0")) { |
| |
f = F[i]; |
| |
sm1(" f (ring) dc ring_def "); |
| |
return(true); |
| |
} |
| |
} |
| |
} |
| |
}else if (IsPolynomial(F)) { |
| |
if (F != Poly("0")) { |
| |
sm1(" F (ring) dc ring_def "); |
| |
return(true); |
| |
} |
| |
} |
| |
return(false); |
| |
} |
| |
|
| |
def asir_BfRoots2(G) { |
| |
local bb,ans,ss; |
| |
sm1(" G flatten {dehomogenize} map /G set "); |
| |
changeRing(G); |
| |
ss = asir_generic_bfct(asssssir,G,[x,y],[Dx,Dy],[1,1]); |
| |
bb = [ss]; |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
def asir_BfRoots3(G) { |
| |
local bb,ans,ss; |
| |
sm1(" G flatten {dehomogenize} map /G set "); |
| |
changeRing(G); |
| |
ss = asir_generic_bfct(asssssir,G,[x,y,z],[Dx,Dy,Dz],[1,1,1]); |
| |
bb = [ss]; |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
|
| def findMinSol(f) { |
def findMinSol(f) { |
| sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
| } |
} |
| Line 67 def nonquasi2(p,q) { |
|
| Line 121 def nonquasi2(p,q) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
| |
R = asir_BfRoots2(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |
| Line 96 def DeRham2WithAsir(f) { |
|
| Line 151 def DeRham2WithAsir(f) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
| |
R = asir_BfRoots2(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |
| Line 115 def DeRham3WithAsir(f) { |
|
| Line 171 def DeRham3WithAsir(f) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y,z"); |
/* R = BfRoots1(Res0[0],"x,y,z"); */ |
| |
R = asir_BfRoots3(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |