| version 1.2, 2000/12/15 02:44:32 |
version 1.3, 2000/12/27 08:09:27 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.1 2000/12/14 13:18:41 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.2 2000/12/15 02:44:32 takayama Exp $ */ |
| |
|
| load["restriction.k"];; |
load["restriction.k"];; |
| load("../ox/ox.k");; |
load("../ox/ox.k");; |
| Line 32 def asirAnnfsXYZ(a,f) { |
|
| Line 32 def asirAnnfsXYZ(a,f) { |
|
| return(b); |
return(b); |
| } |
} |
| |
|
| |
def asir_rpc_old(argv_rpc_asir) { |
| |
sm1(" oxasir.ccc [ ] eq { |
| |
(Starting ox_asir server.) message |
| |
ox_asirConnectMethod |
| |
} { } ifelse "); |
| |
sm1(" oxasir.ccc argv_rpc_asir asir /FunctionValue set "); |
| |
} |
| |
def asir_define_own_functions() { |
| |
asir_rpc_old(["igcd",2,3]); |
| |
sm1(" oxasir.ccc (def mygeneric_bfct(Id,V,DV,W) { |
| |
return( rtostr(generic_bfct(Id,V,DV,W))); |
| |
}) oxsubmit "); |
| |
} |
| |
|
| |
def asir_generic_bfct(ii,vv,dd,ww) { |
| |
local ans; |
| |
ans = asir_rpc_old(["mygeneric_bfct",ii,vv,dd,ww]); |
| |
return(ans); |
| |
} |
| |
/* asir_generic_bfct([Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */ |
| |
|
| |
def asir_BfRoots2(G) { |
| |
local bb,ans,ss; |
| |
sm1(" G flatten {dehomogenize} map /G set "); |
| |
asir_define_own_functions(); |
| |
ss = asir_generic_bfct(G,[x,y],[Dx,Dy],[1,1]); |
| |
bb = [ss]; |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
def asir_BfRoots3(G) { |
| |
local bb,ans,ss; |
| |
sm1(" G flatten {dehomogenize} map /G set "); |
| |
asir_define_own_functions(); |
| |
ss = asir_generic_bfct(G,[x,y,z],[Dx,Dy,Dz],[1,1,1]); |
| |
bb = [ss]; |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
|
| def findMinSol(f) { |
def findMinSol(f) { |
| sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
| } |
} |
| Line 67 def nonquasi2(p,q) { |
|
| Line 107 def nonquasi2(p,q) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
| |
R = asir_BfRoots2(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |
| Line 96 def DeRham2WithAsir(f) { |
|
| Line 137 def DeRham2WithAsir(f) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
| |
R = asir_BfRoots2(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |
| Line 115 def DeRham3WithAsir(f) { |
|
| Line 157 def DeRham3WithAsir(f) { |
|
| Res = Sminimal(pp); |
Res = Sminimal(pp); |
| Res0 = Res[0]; |
Res0 = Res[0]; |
| Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
| R = BfRoots1(Res0[0],"x,y,z"); |
/* R = BfRoots1(Res0[0],"x,y,z"); */ |
| |
R = asir_BfRoots3(Res0[0]); |
| Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
| Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
| R0 = R[0]; |
R0 = R[0]; |