version 1.2, 2000/12/15 02:44:32 |
version 1.3, 2000/12/27 08:09:27 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.1 2000/12/14 13:18:41 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.2 2000/12/15 02:44:32 takayama Exp $ */ |
|
|
load["restriction.k"];; |
load["restriction.k"];; |
load("../ox/ox.k");; |
load("../ox/ox.k");; |
Line 32 def asirAnnfsXYZ(a,f) { |
|
Line 32 def asirAnnfsXYZ(a,f) { |
|
return(b); |
return(b); |
} |
} |
|
|
|
def asir_rpc_old(argv_rpc_asir) { |
|
sm1(" oxasir.ccc [ ] eq { |
|
(Starting ox_asir server.) message |
|
ox_asirConnectMethod |
|
} { } ifelse "); |
|
sm1(" oxasir.ccc argv_rpc_asir asir /FunctionValue set "); |
|
} |
|
def asir_define_own_functions() { |
|
asir_rpc_old(["igcd",2,3]); |
|
sm1(" oxasir.ccc (def mygeneric_bfct(Id,V,DV,W) { |
|
return( rtostr(generic_bfct(Id,V,DV,W))); |
|
}) oxsubmit "); |
|
} |
|
|
|
def asir_generic_bfct(ii,vv,dd,ww) { |
|
local ans; |
|
ans = asir_rpc_old(["mygeneric_bfct",ii,vv,dd,ww]); |
|
return(ans); |
|
} |
|
/* asir_generic_bfct([Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */ |
|
|
|
def asir_BfRoots2(G) { |
|
local bb,ans,ss; |
|
sm1(" G flatten {dehomogenize} map /G set "); |
|
asir_define_own_functions(); |
|
ss = asir_generic_bfct(G,[x,y],[Dx,Dy],[1,1]); |
|
bb = [ss]; |
|
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
|
return([ans, bb]); |
|
} |
|
def asir_BfRoots3(G) { |
|
local bb,ans,ss; |
|
sm1(" G flatten {dehomogenize} map /G set "); |
|
asir_define_own_functions(); |
|
ss = asir_generic_bfct(G,[x,y,z],[Dx,Dy,Dz],[1,1,1]); |
|
bb = [ss]; |
|
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
|
return([ans, bb]); |
|
} |
|
|
def findMinSol(f) { |
def findMinSol(f) { |
sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); |
} |
} |
Line 67 def nonquasi2(p,q) { |
|
Line 107 def nonquasi2(p,q) { |
|
Res = Sminimal(pp); |
Res = Sminimal(pp); |
Res0 = Res[0]; |
Res0 = Res[0]; |
Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
|
R = asir_BfRoots2(Res0[0]); |
Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
R0 = R[0]; |
R0 = R[0]; |
Line 96 def DeRham2WithAsir(f) { |
|
Line 137 def DeRham2WithAsir(f) { |
|
Res = Sminimal(pp); |
Res = Sminimal(pp); |
Res0 = Res[0]; |
Res0 = Res[0]; |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
R = BfRoots1(Res0[0],"x,y"); |
/* R = BfRoots1(Res0[0],"x,y"); */ |
|
R = asir_BfRoots2(Res0[0]); |
Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
R0 = R[0]; |
R0 = R[0]; |
Line 115 def DeRham3WithAsir(f) { |
|
Line 157 def DeRham3WithAsir(f) { |
|
Res = Sminimal(pp); |
Res = Sminimal(pp); |
Res0 = Res[0]; |
Res0 = Res[0]; |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); |
R = BfRoots1(Res0[0],"x,y,z"); |
/* R = BfRoots1(Res0[0],"x,y,z"); */ |
|
R = asir_BfRoots3(Res0[0]); |
Println("Step3: computing the cohomology of the truncated complex."); |
Println("Step3: computing the cohomology of the truncated complex."); |
Print("Roots and b-function are "); Println(R); |
Print("Roots and b-function are "); Println(R); |
R0 = R[0]; |
R0 = R[0]; |