[BACK]Return to demo.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / restriction

Diff for /OpenXM/src/k097/lib/restriction/demo.k between version 1.2 and 1.3

version 1.2, 2000/12/15 02:44:32 version 1.3, 2000/12/27 08:09:27
Line 1 
Line 1 
 /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.1 2000/12/14 13:18:41 takayama Exp $  */  /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.2 2000/12/15 02:44:32 takayama Exp $  */
   
 load["restriction.k"];;  load["restriction.k"];;
 load("../ox/ox.k");;  load("../ox/ox.k");;
Line 32  def asirAnnfsXYZ(a,f) {
Line 32  def asirAnnfsXYZ(a,f) {
   return(b);    return(b);
 }  }
   
   def asir_rpc_old(argv_rpc_asir) {
      sm1(" oxasir.ccc [ ] eq {
          (Starting ox_asir server.) message
           ox_asirConnectMethod
           } {  } ifelse ");
      sm1(" oxasir.ccc argv_rpc_asir asir /FunctionValue set ");
   }
   def asir_define_own_functions() {
      asir_rpc_old(["igcd",2,3]);
      sm1(" oxasir.ccc (def mygeneric_bfct(Id,V,DV,W)  {
                               return( rtostr(generic_bfct(Id,V,DV,W)));
                         })  oxsubmit ");
   }
   
   def asir_generic_bfct(ii,vv,dd,ww) {
      local ans;
      ans = asir_rpc_old(["mygeneric_bfct",ii,vv,dd,ww]);
      return(ans);
   }
   /* asir_generic_bfct([Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */
   
   def asir_BfRoots2(G) {
      local bb,ans,ss;
      sm1(" G flatten {dehomogenize} map /G set ");
      asir_define_own_functions();
      ss = asir_generic_bfct(G,[x,y],[Dx,Dy],[1,1]);
      bb = [ss];
      sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
      return([ans, bb]);
   }
   def asir_BfRoots3(G) {
      local bb,ans,ss;
      sm1(" G flatten {dehomogenize} map /G set ");
      asir_define_own_functions();
      ss = asir_generic_bfct(G,[x,y,z],[Dx,Dy,Dz],[1,1,1]);
      bb = [ss];
      sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
      return([ans, bb]);
   }
   
 def findMinSol(f) {  def findMinSol(f) {
   sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set ");    sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set ");
 }  }
Line 67  def nonquasi2(p,q) {
Line 107  def nonquasi2(p,q) {
   Res = Sminimal(pp);    Res = Sminimal(pp);
   Res0 = Res[0];    Res0 = Res[0];
   Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);    Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
   R = BfRoots1(Res0[0],"x,y");  /*  R = BfRoots1(Res0[0],"x,y"); */
     R = asir_BfRoots2(Res0[0]);
   Println("Step3: computing the cohomology of the truncated complex.");    Println("Step3: computing the cohomology of the truncated complex.");
   Print("Roots and b-function are "); Println(R);    Print("Roots and b-function are "); Println(R);
   R0 = R[0];    R0 = R[0];
Line 96  def DeRham2WithAsir(f) {
Line 137  def DeRham2WithAsir(f) {
   Res = Sminimal(pp);    Res = Sminimal(pp);
   Res0 = Res[0];    Res0 = Res[0];
   Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);    Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
   R = BfRoots1(Res0[0],"x,y");    /* R = BfRoots1(Res0[0],"x,y"); */
     R = asir_BfRoots2(Res0[0]);
   Println("Step3: computing the cohomology of the truncated complex.");    Println("Step3: computing the cohomology of the truncated complex.");
   Print("Roots and b-function are "); Println(R);    Print("Roots and b-function are "); Println(R);
   R0 = R[0];    R0 = R[0];
Line 115  def DeRham3WithAsir(f) {
Line 157  def DeRham3WithAsir(f) {
   Res = Sminimal(pp);    Res = Sminimal(pp);
   Res0 = Res[0];    Res0 = Res[0];
   Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);    Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
   R = BfRoots1(Res0[0],"x,y,z");  /*  R = BfRoots1(Res0[0],"x,y,z"); */
     R = asir_BfRoots3(Res0[0]);
   Println("Step3: computing the cohomology of the truncated complex.");    Println("Step3: computing the cohomology of the truncated complex.");
   Print("Roots and b-function are "); Println(R);    Print("Roots and b-function are "); Println(R);
   R0 = R[0];    R0 = R[0];

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.3

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>