[BACK]Return to demo.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / restriction

Diff for /OpenXM/src/k097/lib/restriction/demo.k between version 1.1 and 1.2

version 1.1, 2000/12/14 13:18:41 version 1.2, 2000/12/15 02:44:32
Line 1 
Line 1 
 /* $OpenXM$  */  /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.1 2000/12/14 13:18:41 takayama Exp $  */
   
 load["restriction.k"];;  load["restriction.k"];;
 load("../ox/ox.k");;  load("../ox/ox.k");;
Line 6  load("../ox/ox.k");;
Line 6  load("../ox/ox.k");;
 def demoSendAsirCommand(a) {  def demoSendAsirCommand(a) {
   a.executeString("load(\"bfct\");");    a.executeString("load(\"bfct\");");
   a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");    a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");
     a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");
   a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; ");    a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; ");
 }  }
   
Line 49  def asirAnnXYZ(a,f) {
Line 50  def asirAnnXYZ(a,f) {
   return(b);    return(b);
 }  }
   
   
 def nonquasi2(p,q) {  def nonquasi2(p,q) {
   local s,ans,f;    local s,ans,f;
   f = x^p+y^q+x*y^(q-1);    f = x^p+y^q+x*y^(q-1);
Line 71  def nonquasi2(p,q) {
Line 73  def nonquasi2(p,q) {
   R0 = R[0];    R0 = R[0];
   Ans=Srestall(Res0, ["x", "y"],  ["x", "y"], R0[Length(R0)-1]);    Ans=Srestall(Res0, ["x", "y"],  ["x", "y"], R0[Length(R0)-1]);
   Print("Answer is "); Println(Ans[0]);    Print("Answer is "); Println(Ans[0]);
     return(Ans);
   }
   
   def asirAnn0XYZ(a,f) {
     local p,b,b0;
     RingD("x,y,z,s");  /* Fix!! See the definition of myann() */
     p = ToString(f);
     b = a.rpc("myann0",[p]);
     Print("Annhilating ideal of f^r is "); Println(b);
     return(b);
   }
   
   def DeRham2WithAsir(f) {
     local s;
     s = ToString(f);
     II = asirAnn0XYZ(asssssir,f);
     Print("Step 1: Annhilating ideal (II)"); Println(II);
     sm1(" II  { [(x) (y) (Dx) (Dy) ] laplace0 } map /II set ");
     Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
     pp = Map(II,"Spoly");
     Res = Sminimal(pp);
     Res0 = Res[0];
     Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
     R = BfRoots1(Res0[0],"x,y");
     Println("Step3: computing the cohomology of the truncated complex.");
     Print("Roots and b-function are "); Println(R);
     R0 = R[0];
     Ans=Srestall(Res0, ["x", "y"],  ["x", "y"],R0[Length(R0)-1] );
     Print("Answer is ");Println(Ans[0]);
     return(Ans);
   }
   def DeRham3WithAsir(f) {
     local s;
     s = ToString(f);
     II = asirAnn0XYZ(asssssir,f);
     Print("Step 1: Annhilating ideal (II)"); Println(II);
     sm1(" II  { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /II set ");
     Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
     pp = Map(II,"Spoly");
     Res = Sminimal(pp);
     Res0 = Res[0];
     Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
     R = BfRoots1(Res0[0],"x,y,z");
     Println("Step3: computing the cohomology of the truncated complex.");
     Print("Roots and b-function are "); Println(R);
     R0 = R[0];
     Ans=Srestall(Res0, ["x", "y", "z"],  ["x", "y", "z"],R0[Length(R0)-1] );
     Print("Answer is ");Println(Ans[0]);
   return(Ans);    return(Ans);
 }  }

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>