===================================================================
RCS file: /home/cvs/OpenXM/src/k097/lib/minimal/minimal.k,v
retrieving revision 1.15
retrieving revision 1.36
diff -u -p -r1.15 -r1.36
--- OpenXM/src/k097/lib/minimal/minimal.k	2000/06/14 07:44:05	1.15
+++ OpenXM/src/k097/lib/minimal/minimal.k	2007/07/03 22:28:11	1.36
@@ -1,13 +1,28 @@
-/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.14 2000/06/09 08:04:54 takayama Exp $ */
+/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.35 2007/07/03 22:05:46 takayama Exp $ */
 #define DEBUG 1 
-/* #define ORDINARY 1 */
+Sordinary = false;
 /* If you run this program on openxm version 1.1.2 (FreeBSD),
    make a symbolic link by the command
    ln -s /usr/bin/cpp /lib/cpp
 */
 #define OFFSET 0 
-#define TOTAL_STRATEGY 1
 /* #define OFFSET 20*/
+Sverbose = false; /* Be extreamly verbose     */
+Sverbose2 = true; /* Don't be quiet and show minimal information */
+def Sprintln(s) {
+  if (Sverbose) Println(s);
+}
+def Sprint(s) {
+  if (Sverbose) Print(s);
+}
+def Sprintln2(s) {
+  if (Sverbose2) Println(s);
+}
+def Sprint2(s) {
+  if (Sverbose2) Print(s);
+  sm1(" [(flush)] extension ");
+}
+
 /* Test sequences. 
    Use load["minimal.k"];;
 
@@ -29,17 +44,12 @@
      
 */
 
+/* We cannot use load command in the if statement. */
+load("lib/minimal/cohom.k");
+Load_sm1(["k0-tower.sm1","lib/minimal/k0-tower.sm1"],"k0-tower.sm1.loaded");
+Load_sm1(["new.sm1","lib/minimal/new.sm1"],"new.sm1.loaded");
+sm1(" oxNoX ");
 
-load("cohom.k");
-def load_tower() {
-  if (Boundp("k0-tower.sm1.loaded")) {
-  }else{
-    sm1(" [(parse) (k0-tower.sm1) pushfile ] extension ");
-    sm1(" /k0-tower.sm1.loaded 1 def ");
-  }
-  sm1(" oxNoX ");
-}
-load_tower();
 SonAutoReduce = true;
 def Factor(f) {
    sm1(f, " fctr /FunctionValue set");
@@ -50,6 +60,115 @@ def Reverse(f) {
 def Sgroebner(f) {
    sm1(" [f] groebner /FunctionValue set");
 }
+
+def Sinvolutive(f,w) {
+  local g,m;
+  if (IsArray(f[0])) {
+    m = NewArray(Length(f[0]));
+  }else{
+    m = [0];
+  }
+  g = Sgroebner(f);
+  /* This is a temporary code. */
+  sm1(" g 0 get { w m init_w<m>} map /FunctionValue set ");
+}
+
+
+
+def Error(s) {
+  sm1(" s error ");
+}
+
+def IsNull(s) {
+  if (Stag(s) == 0) return(true);
+  else return(false);
+}
+
+def MonomialPart(f) {
+  sm1(" [(lmonom) f] gbext /FunctionValue set ");
+}
+
+def Warning(s) {
+  Print("Warning: ");
+  Println(s);
+}
+def RingOf(f) {
+  local r;
+  if (IsPolynomial(f)) {
+    if (f != Poly("0")) {
+      sm1(f," (ring) dc /r set ");
+    }else{
+      sm1(" [(CurrentRingp)] system_variable /r set ");
+    }
+  }else{
+    Warning("RingOf(f): the argument f must be a polynomial. Return the current ring.");
+    sm1(" [(CurrentRingp)] system_variable /r set ");
+  }
+  return(r);
+}
+
+def Ord_w_m(f,w,m) {
+  sm1(" f  w  m ord_w<m> { (universalNumber) dc } map /FunctionValue set ");
+}
+HelpAdd(["Ord_w_m",
+["Ord_w_m(f,w,m) returns the order of f with respect to w with the shift m.",
+ "Note that the order of the ring and the weight w must be the same.",
+ "When f is zero, it returns -intInfinity = -999999999.",
+ "Example:  Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ",
+ "          Ord_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]);
+
+def Init_w_m(f,w,m) {
+  sm1(" f w m init_w<m> /FunctionValue set ");
+}
+HelpAdd(["Init_w_m",
+["Init_w_m(f,w,m) returns the initial of f with respect to w with the shift m.",
+ "Note that the order of the ring and the weight w must be the same.",
+ "Example:  Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ",
+ "          Init_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]);
+
+def Max(v) {
+  local i,t,n;
+  n = Length(v);
+  if (n == 0) return(null);
+  t = v[0];
+  for (i=0; i<n; i++) {
+    if (v[i] > t) { t = v[i];}
+  }
+  return(t);
+}
+HelpAdd(["Max",
+["Max(v) returns the maximal element in v."]]);
+
+def Kernel(f,v) {
+  local ans;
+  /* v :  string or ring */
+  if (Length(Arglist) < 2) {
+    sm1(" [f] syz /ans set ");
+  }else{
+    sm1(" [f v] syz /ans set ");
+  }
+  return(ans);
+}
+def Syz(f) {
+  sm1(" [f] syz /FunctionValue set ");
+}
+HelpAdd(["Kernel",
+["Kernel(f) returns the syzygy of f.",
+ "Return value [b, c]: b is a set of generators of the syzygies of f",
+ "                   : c=[gb, backward transformation, syzygy without",
+ "                                                   dehomogenization",
+ "Example:  Weyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ",
+ "          s=Kernel([x*Dx+1,Dx^2+x^5]); s[0]:"]]);
+/* cf. sm1_syz in cohom.k */
+def Gb(f) {
+  sm1(" [f] gb /FunctionValue set ");
+}
+HelpAdd(["Gb",
+["Gb(f) returns the Groebner basis of f.",
+ "cf. Kernel, Weyl."]]);
+
+
+/*  End of standard functions that should be moved to standard libraries. */
 def test0() {
   local f;
   Sweyl("x,y,z");
@@ -69,7 +188,6 @@ def test1() {
 }
 
   
-
 def Sweyl(v,w) {
   /* extern WeightOfSweyl ; */
   local ww,i,n;
@@ -128,31 +246,43 @@ def StoTower() {
 }
 
 def SsetTower(tower) {
-sm1(" [(AvoidTheSameRing)] pushEnv 
-      [ [(AvoidTheSameRing) 0] system_variable 
-        [(gbListTower) tower (list) dc] system_variable
+sm1(" [(AvoidTheSameRing)] pushEnv \
+      [ [(AvoidTheSameRing) 0] system_variable \
+        [(gbListTower) tower (list) dc] system_variable \
       ] pop popEnv ");
       /* sm1("(hoge) message show_ring "); */
 }
 
 def SresolutionFrameWithTower(g,opt) {
   local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof,
-        gbasis, nohomog;
+        gbasis, nohomog,i,n;
+  /* extern Sordinary */
   nohomog = false;
-  count = -1;
+  count = -1;  Sordinary = false; /* default value for options. */
   if (Length(Arglist) >= 2) {
-    if (IsInteger(opt)) {
-      count = opt;
-    }else if (IsString(opt)) {
-      if (opt == "homogenized") {
-         nohomog = true;
-      }else{
-         Println("Warning: unknown option");
-         Println(opt);
+    if (IsArray(opt)) {
+      n = Length(opt);
+      for (i=0; i<n; i++) {
+        if (IsInteger(opt[i])) {
+          count = opt[i];
+        }
+        if (IsString(opt[i])) {
+          if (opt[i] == "homogenized") {
+            nohomog = true;
+          }else if (opt[i] == "Sordinary") {
+            Sordinary = true;
+          }else{
+            Println("Warning: unknown option");
+            Println(opt);
+          }
+        }
       }
+    } else if (IsNull(opt)){
+    } else {
+      Println("Warning: option should be given by an array.");
+      Println(opt);
+      Println("--------------------------------------------");
     }
-  }else{
-    count = -1;
   }
 
   sm1(" setupEnvForResolution ");
@@ -186,7 +316,7 @@ def SresolutionFrameWithTower(g,opt) {
   /* -sugar is fine? */
   sm1(" setupEnvForResolution "); 
 
-  Println(g);
+  Sprintln(g);
   startingGB = g;
   /* ans = [ SzeroMap(g) ];  It has not been implemented. see resol1.withZeroMap */
   ans = [ ];
@@ -228,21 +358,27 @@ def NewPolynomialVector(size) {
 }
 
 def  SturnOffHomogenization() {
-  sm1("
-    [(Homogenize)] system_variable 1 eq
-    { (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message
-      [(Homogenize) 0] system_variable
-      [(ReduceLowerTerms) 0] system_variable
-    } {  } ifelse
+  sm1(" \
+    [(Homogenize)] system_variable 1 eq \
+    { Sverbose { \
+      (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message } { } ifelse \
+      [(Homogenize) 0] system_variable \
+      [(ReduceLowerTerms) 0] system_variable \
+    } {  } ifelse \
   ");
 }
+/* NOTE!!!  Be careful these changes of global environmental variables.
+   We should make a standard set of values and restore these values
+   after computation and interruption.  August 15, 2000.
+*/
 def  SturnOnHomogenization() {
-  sm1("
-    [(Homogenize)] system_variable 0 eq
-    { (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message
-      [(Homogenize) 1] system_variable
-      [(ReduceLowerTerms) 1] system_variable
-    } {  } ifelse
+  sm1(" \
+    [(Homogenize)] system_variable 0 eq \
+    { Sverbose { \
+        (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message } {  } ifelse \
+      [(Homogenize) 1] system_variable \
+      [(ReduceLowerTerms) 1] system_variable \
+    } {  } ifelse \
   ");
 }
 
@@ -287,7 +423,7 @@ def Sres0FrameWithSkelton(g) {
     si = pair[1,0];
     sj = pair[1,1];
     /* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */
-    Print(".");
+    Sprint(".");
 
     t_syz = NewPolynomialVector(gLength);
     t_syz[i] = si;
@@ -295,7 +431,7 @@ def Sres0FrameWithSkelton(g) {
     syzAll[k] = t_syz;
   }
   t_syz = syzAll;
-  Print("Done. betti="); Println(betti);
+  Sprint("Done. betti="); Sprintln(betti);
   /* Println(g);  g is in a format such as 
     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
@@ -315,6 +451,9 @@ def StotalDegree(f) {
   return(d0);
 }
 
+HelpAdd(["Sord_w",
+["Sord_w(f,w) returns the w-order of f",
+ "Example: Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]):"]]);
 /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */
 def Sord_w(f,w) {
   local neww,i,n;
@@ -348,8 +487,10 @@ def test_SinitOfArray() {
   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
   p=SresolutionFrameWithTower(f);
-  sm1_pmat(p); 
-  sm1_pmat(SgenerateTable(p[1]));
+  if (Sverbose) {
+    sm1_pmat(p); 
+    sm1_pmat(SgenerateTable(p[1]));
+  }
   return(p);
   frame = p[0];
   sm1_pmat(p[1]);
@@ -367,19 +508,16 @@ def Sdegree(f,tower,level) {
   f = Init(f);
   if (level <= 1) return(StotalDegree(f));
   i = Degree(f,es);
-#ifdef TOTAL_STRATEGY
   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); 
-#endif
-  /* Strategy must be compatible with ordering.  */
-  /* Weight vector must be non-negative, too.  */
-  /* See Sdegree, SgenerateTable, reductionTable. */
-  wd = Sord_w(f,ww);
-  return(wd+Sdegree(tower[level-2,i],tower,level-1));
     
 }
 
 def SgenerateTable(tower) {
   local height, n,i,j, ans, ans_at_each_floor;
+
+  /*
+  Sprint("SgenerateTable: tower=");Sprintln(tower);  
+  sm1(" print_switch_status "); */
   height = Length(tower);
   ans = NewArray(height);
   for (i=0; i<height; i++) {
@@ -463,12 +601,19 @@ def SlaScala(g,opt) {
         reductionTable_tmp;
   /* extern WeightOfSweyl; */
   ww = WeightOfSweyl;
-  Print("WeightOfSweyl="); Println(WeightOfSweyl);
-  rf = SresolutionFrameWithTower(g,opt);
-  Print("rf="); sm1_pmat(rf);
+  Sprint("WeightOfSweyl="); Sprintln(WeightOfSweyl);
+  rf = SresolutionFrameWithTower(g,opt);  
+  Sprint("rf="); if (Sverbose) {sm1_pmat(rf);}
   redundant_seq = 1;   redundant_seq_ordinary = 1;
   tower = rf[1];
+
+  Sprintln("Generating reduction table which gives an order of reduction.");
+  Sprint("WeghtOfSweyl="); Sprintln(WeightOfSweyl);
+  Sprint2("tower="); Sprintln2(tower);
   reductionTable = SgenerateTable(tower);
+  Sprint2("reductionTable="); 
+  if (Sverbose || Sverbose2) {sm1_pmat(reductionTable);}
+
   skel = rf[2];
   redundantTable = SnewArrayOfFormat(rf[1]);
   redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
@@ -486,11 +631,12 @@ def SlaScala(g,opt) {
       while (SthereIs(reductionTable_tmp,strategy)) {
         i = SnextI(reductionTable_tmp,strategy,redundantTable,
                    skel,level,freeRes);
-        Println([level,i]);
+        Sprintln([level,i]);
         reductionTable_tmp[i] = -200000;
         if (reductionTable[level,i] == strategy) {
-           Print("Processing "); Print([level,i]);
-           Print("   Strategy = "); Println(strategy);
+           Sprint("Processing [level,i]= "); Sprint([level,i]);
+           Sprint("   Strategy = "); Sprintln(strategy);
+           Sprint2(strategy);
            if (level == 0) {
              if (IsNull(redundantTable[level,i])) {
                bases = freeRes[level];
@@ -510,21 +656,21 @@ def SlaScala(g,opt) {
                   place = f[3];
                   /* (level-1, place) is the place for f[0], 
                      which is a newly obtained  GB. */
-#ifdef ORDINARY
+if (Sordinary) {
                   redundantTable[level-1,place] = redundant_seq;
                   redundant_seq++;
-#else
+}else{
                   if (f[4] > f[5]) {
                     /* Zero in the gr-module */
-                    Print("v-degree of [org,remainder] = ");
-                    Println([f[4],f[5]]);
-                    Print("[level,i] = "); Println([level,i]);
+                    Sprint("v-degree of [org,remainder] = ");
+                    Sprintln([f[4],f[5]]);
+                    Sprint("[level,i] = "); Sprintln([level,i]);
                     redundantTable[level-1,place] = 0;
                   }else{
                     redundantTable[level-1,place] = redundant_seq;
                     redundant_seq++;
                   }
-#endif
+}
                   redundantTable_ordinary[level-1,place]
                      =redundant_seq_ordinary;
                   redundant_seq_ordinary++;
@@ -550,6 +696,7 @@ def SlaScala(g,opt) {
     }
     strategy++;
   }
+  Sprintln2(" ");
   n = Length(freeRes);
   freeResV = SnewArrayOfFormat(freeRes);
   for (i=0; i<n; i++) {
@@ -557,7 +704,7 @@ def SlaScala(g,opt) {
     bases = Sbases_to_vec(bases,bettiTable[i]);
     freeResV[i] = bases;
   }
-  return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]);
+  return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]);
 }
 
 def SthereIs(reductionTable_tmp,strategy) {
@@ -597,9 +744,9 @@ def SnextI(reductionTable_tmp,strategy,redundantTable,
        }
      }
    }
-   Print("reductionTable_tmp=");
-   Println(reductionTable_tmp);
-   Println("See also reductionTable, strategy, level,i");
+   Sprint("reductionTable_tmp=");
+   Sprintln(reductionTable_tmp);
+   Sprintln("See also reductionTable, strategy, level,i");
    Error("SnextI: bases[i] or bases[j] is null for all combinations.");
 }
 
@@ -633,7 +780,7 @@ def SwhereInGB(f,tower) {
     q = MonomialPart(f);
     if (p == q) return(i);
   }
-  Println([f,tower]);
+  Sprintln([f,tower]);
   Error("whereInGB : [f,myset]: f could not be found in the myset.");      
 }
 def SunitOfFormat(pos,forms) {
@@ -650,15 +797,7 @@ def SunitOfFormat(pos,forms) {
   return(ans);
 }
 
-def Error(s) {
-  sm1(" s error ");
-}
 
-def IsNull(s) {
-  if (Stag(s) == 0) return(true);
-  else return(false);
-}
-
 def StowerOf(tower,level) {
   local ans,i;
   ans = [ ];
@@ -679,9 +818,6 @@ def Sspolynomial(f,g) {
   sm1("f g spol /FunctionValue set");
 }
 
-def MonomialPart(f) {
-  sm1(" [(lmonom) f] gbext /FunctionValue set ");
-}
 
 /* WARNING:
   When you use SwhereInTower, you have to change gbList
@@ -698,7 +834,7 @@ def SwhereInTower(f,tower) {
     q = MonomialPart(f);
     if (p == q) return(i);
   }
-  Println([f,tower]);
+  Sprintln([f,tower]);
   Error("[f,tower]: f could not be found in the tower.");      
 }
 
@@ -710,23 +846,23 @@ def SpairAndReduction(skel,level,ii,freeRes,tower,ww) 
   local i, j, myindex, p, bases, tower2, gi, gj,
        si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
        vdeg,vdeg_reduced;
-  Println("SpairAndReduction:");
+  Sprintln("SpairAndReduction:");
 
   if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
   p = skel[level,ii];
   myindex = p[0];  
   i = myindex[0]; j = myindex[1];
   bases = freeRes[level-1];
-  Println(["p and bases ",p,bases]);
+  Sprintln(["p and bases ",p,bases]);
   if (IsNull(bases[i]) || IsNull(bases[j])) {
-    Println([level,i,j,bases[i],bases[j]]);
+    Sprintln([level,i,j,bases[i],bases[j]]);
     Error("level, i, j : bases[i], bases[j]  must not be NULL.");
   }
 
   tower2 = StowerOf(tower,level-1);
   SsetTower(tower2);  
-  Println(["level=",level]);
-  Println(["tower2=",tower2]);
+  Sprintln(["level=",level]);
+  Sprintln(["tower2=",tower2]);
   /** sm1(" show_ring ");   */
 
   gi = Stoes_vec(bases[i]);
@@ -737,23 +873,23 @@ def SpairAndReduction(skel,level,ii,freeRes,tower,ww) 
   sj = ssp[0,1];
   syzHead = si*es^i;
   /* This will be the head term, I think. But, double check. */
-  Println([si*es^i,sj*es^j]);
+  Sprintln([si*es^i,sj*es^j]);
 
-  Print("[gi, gj] = "); Println([gi,gj]);
-  sm1(" [(Homogenize)] system_variable message ");
-  Print("Reduce the element "); Println(si*gi+sj*gj);
-  Print("by  "); Println(bases);
+  Sprint("[gi, gj] = "); Sprintln([gi,gj]);
+  sm1(" [(Homogenize)] system_variable  ");
+  Sprint("Reduce the element "); Sprintln(si*gi+sj*gj);
+  Sprint("by  "); Sprintln(bases);
 
   tmp = Sreduction(si*gi+sj*gj, bases);
 
-  Print("result is "); Println(tmp);
+  Sprint("result is "); Sprintln(tmp);
 
   /* This is essential part for V-minimal resolution. */
   /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
   vdeg = SvDegree(si*gi,tower,level-1,ww); 
   vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);  
-  Print("vdegree of the original = "); Println(vdeg);
-  Print("vdegree of the remainder = "); Println(vdeg_reduced);
+  Sprint("vdegree of the original = "); Sprintln(vdeg);
+  Sprint("vdegree of the remainder = "); Sprintln(vdeg_reduced);
 
   t_syz = tmp[2];
   si = si*tmp[1]+t_syz[i];
@@ -769,7 +905,7 @@ def SpairAndReduction(skel,level,ii,freeRes,tower,ww) 
   ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced];
   /* pos is the place to put syzygy at level. */
   /* pos2 is the place to put a new GB at level-1. */   
-  Println(ans);
+  Sprintln(ans);
   return(ans);
 }
 
@@ -802,24 +938,6 @@ def Sreduction(f,myset) {
   return([tmp[0],tmp[1],t_syz]);
 }
 
-def Warning(s) {
-  Print("Warning: ");
-  Println(s);
-}
-def RingOf(f) {
-  local r;
-  if (IsPolynomial(f)) {
-    if (f != Poly("0")) {
-      sm1(f," (ring) dc /r set ");
-    }else{
-      sm1(" [(CurrentRingp)] system_variable /r set ");
-    }
-  }else{
-    Warning("RingOf(f): the argument f must be a polynomial. Return the current ring.");
-    sm1(" [(CurrentRingp)] system_variable /r set ");
-  }
-  return(r);
-}
 
 def Sfrom_es(f,size) {
   local c,ans, i, d, myes, myee, j,n,r,ans2;
@@ -878,8 +996,10 @@ def Sbases_to_vec(bases,size) {
 }
 
 HelpAdd(["Sminimal",
-["It constructs the V-minimal free resolution by LaScala-Stillman's algorithm",
- "option: \"homogenized\" (no automatic homogenization ",
+["It constructs the V-minimal free resolution by LaScala's algorithm",
+ "option: \"homogenized\" (no automatic homogenization)",
+ "      : \"Sordinary\"   (no (u,v)-minimal resolution)",
+ "Options should be given as an array.",
  "Example:  Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", 
  "          v=[[2*x*Dx + 3*y*Dy+6, 0],",
  "             [3*x^2*Dy + 2*y*Dx, 0],",
@@ -889,17 +1009,30 @@ HelpAdd(["Sminimal",
  "         Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", 
  "         b = ReParse(a[0]); sm1_pmat(b); ",
  "         IsExact_h(b,[x,y]):",
- "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]);
+ "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution.",
+ " ---> D^{m_3} --b[2]--> D^{m_2} --b[1]--> D^{m_1} --b[0]--> D^{m_0} ",
+ "  Here D^{m_i} are the set of row vectors. "
+ ]]);
 
 def Sminimal(g,opt) {
   local r, freeRes, redundantTable, reducer, maxLevel,
         minRes, seq, maxSeq, level, betti, q, bases, dr,
-        betti_levelplus, newbases, i, j,qq, tminRes;
+        betti_levelplus, newbases, i, j,qq, tminRes,bettiTable, ansSminimal;
+  if (Length(Arglist) < 2) {
+     opt = null;
+  }
+  /* Sordinary is set in SlaScala(g,opt) --> SresolutionFrameWithTower */
+
+  ScheckIfSchreyer("Sminimal:0");
   r = SlaScala(g,opt);
   /* Should I turn off the tower?? */
+  ScheckIfSchreyer("Sminimal:1");
   freeRes = r[0];
   redundantTable = r[1];
   reducer = r[2];
+  bettiTable = SbettiTable(redundantTable);
+  Sprintln2("BettiTable ------");
+  if (Sverbose || Sverbose2) {sm1_pmat(bettiTable);}
   minRes = SnewArrayOfFormat(freeRes);
   seq = 0;
   maxSeq = SgetMaxSeq(redundantTable);
@@ -909,12 +1042,12 @@ def Sminimal(g,opt) {
   }
   seq=maxSeq+1;
   while (seq > 1) {
-    seq--;
+    seq--;  Sprint2(seq);
     for (level = 0; level < maxLevel; level++) {
       betti = Length(freeRes[level]);
       for (q = 0; q<betti; q++) {
         if (redundantTable[level,q] == seq) {
-          Print("[seq,level,q]="); Println([seq,level,q]);
+          Sprint("[seq,level,q]="); Sprintln([seq,level,q]);
           if (level < maxLevel-1) {
             bases = freeRes[level+1];
             dr = reducer[level,q];
@@ -927,10 +1060,10 @@ def Sminimal(g,opt) {
             for (i=0; i<betti_levelplus; i++) {
               newbases[i] = bases[i] + bases[i,q]*dr;
             }
-            Println(["level, q =", level,q]);
-            Println("bases="); sm1_pmat(bases); 
-            Println("dr="); sm1_pmat(dr);
-            Println("newbases="); sm1_pmat(newbases);
+            Sprintln(["level, q =", level,q]);
+            Sprintln("bases="); if (Sverbose) {sm1_pmat(bases); }
+            Sprintln("dr="); if (Sverbose) {sm1_pmat(dr);}
+            Sprintln("newbases="); if (Sverbose) {sm1_pmat(newbases);}
             minRes[level+1] = newbases;
             freeRes = minRes;
 #ifdef DEBUG
@@ -940,7 +1073,7 @@ def Sminimal(g,opt) {
                 for (i=0; i<betti_levelplus; i++) {
                   if (!IsZero(newbases[i,qq])) {
                     Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
-                    Print("redundantTable ="); sm1_pmat(redundantTable[level]);
+                    Sprint("redundantTable ="); sm1_pmat(redundantTable[level]);
                     Error("Stop in Sminimal for debugging.");
                   }
                 }
@@ -953,10 +1086,27 @@ def Sminimal(g,opt) {
     }
    }
    tminRes = Stetris(minRes,redundantTable);
-   return([SpruneZeroRow(tminRes), tminRes,
-          [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]);
+   ansSminimal = [SpruneZeroRow(tminRes), tminRes,
+                  [ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]];
+   Sprintln2(" ");
+   Println("------------ Note -----------------------------");
+   Println("To get shift vectors, use Reparse and SgetShifts(resmat,w)");
+   Println("To get initial of the complex, use Reparse and Sinit_w(resmat,w)");
+   Println("0: minimal resolution, 3: Schreyer resolution ");
+   Println("------------ Resolution Summary  --------------");
+   Print("Betti numbers : "); 
+   Println(Join([Length(ansSminimal[0,0,0])],Map(ansSminimal[0],"Length")));
+   Print("Betti numbers of the Schreyer frame: ");
+   Println(Join([Length(ansSminimal[3,0,0])],Map(ansSminimal[3],"Length")));
+   Println("-----------------------------------------------");
+
+   sm1(" restoreEnvAfterResolution ");
+   Sordinary = false;
+
+   return(ansSminimal);
   /* r[4] is the redundantTable_ordinary */
   /* r[0] is the freeResolution */
+  /* r[5] is the skelton */
 }  
 
 
@@ -1025,9 +1175,11 @@ def Stetris(freeRes,redundantTable) {
     }else{
       newbases = bases;
     }
-    Println(["level=", level]);
-    sm1_pmat(bases);
-    sm1_pmat(newbases);
+    Sprintln(["level=", level]);
+    if (Sverbose){
+      sm1_pmat(bases);
+      sm1_pmat(newbases);
+    }
 
     minRes[level] = newbases;
   }
@@ -1089,21 +1241,15 @@ def Sannfs2(f) {
   local p,pp;
   p = Sannfs(f,"x,y");
   sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
-/*
-  Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1],
-               ["x",-1,"y",-1,"Dx",1,"Dy",1]]); */
-  /* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */
-
   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); 
   pp = Map(p,"Spoly");
-  return(Sminimal_v(pp));
-  /* return(Sminimal(pp)); */
+  return(Sminimal(pp)); 
 }
 
 HelpAdd(["Sannfs2",
 ["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)",
  "of the Laplace transform of the annihilating ideal of the polynomial f in x,y.",
- "See also Sminimal_v, Sannfs3.",
+ "See also Sminimal, Sannfs3.",
  "Example: a=Sannfs2(\"x^3-y^2\");",
  "         b=a[0]; sm1_pmat(b);",
  "         b[1]*b[0]:",
@@ -1111,421 +1257,33 @@ HelpAdd(["Sannfs2",
  "         b=a[0]; sm1_pmat(b);",
  "         b[1]*b[0]:"
 ]]);
+/* Some samples.
+  The betti numbers of most examples are 2,1. (0-th and 1-th).
+  a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. 
+  a=Sannfs2("x^3-y^2-x");    
+  a=Sannfs2("x*y*(x-y)");    
+*/
 
-/* Do not forget to turn on TOTAL_STRATEGY */ 
-def Sannfs2_laScala(f) {
-  local p,pp;
-  p = Sannfs(f,"x,y");
-  /*   Do not make laplace transform. 
-    sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
-    p = [p];
-  */
-  Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); 
-  pp = Map(p[0],"Spoly");
-  return(Sminimal(pp));
-}
 
-def Sannfs2_laScala2(f) {
-  local p,pp;
-  p = Sannfs(f,"x,y");
-  sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
-  p = [p];
-  Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1],
-               ["x",-1,"y",-1,"Dx",1,"Dy",1]]); 
-  pp = Map(p[0],"Spoly");
-  return(Sminimal(pp));
-}
-
 def Sannfs3(f) {
   local p,pp;
   p = Sannfs(f,"x,y,z");
   sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
   Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
   pp = Map(p,"Spoly");
-  return(Sminimal_v(pp));
+  return(Sminimal(pp));
 }
 
 HelpAdd(["Sannfs3",
 ["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)",
  "of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.",
- "See also Sminimal_v, Sannfs2.",
+ "See also Sminimal, Sannfs2.",
  "Example: a=Sannfs3(\"x^3-y^2*z^2\");",
  "         b=a[0]; sm1_pmat(b);",
  "         b[1]*b[0]: b[2]*b[1]:"]]);
 
-/*
-  The betti numbers of most examples are 2,1. (0-th and 1-th).
-  a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. 
-  a=Sannfs2("x^3-y^2-x");    : it causes an error. It should be fixed.
-  a=Sannfs2("x*y*(x-y)");    : it causes an error. It should be fixed.
-
-*/
      
-def Sannfs3_laScala2(f) {
-  local p,pp;
-  p = Sannfs(f,"x,y,z");
-  sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
-  Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1],
-                 ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
-  pp = Map(p,"Spoly");
-  return(Sminimal(pp));
-}
 
-
-/*  The below does not use LaScala-Stillman's algorithm. */
-def Sschreyer(g) {
-  local rf, tower, reductionTable, skel, redundantTable, bases,
-        strategy, maxOfStrategy, height, level, n, i,
-        freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww,
-        redundantTable_ordinary, redundant_seq_ordinary,
-        reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase;
-  /* extern WeightOfSweyl; */
-  ww = WeightOfSweyl;
-  Print("WeghtOfSweyl="); Println(WeightOfSweyl);
-  rf = SresolutionFrameWithTower(g);
-  redundant_seq = 1;   redundant_seq_ordinary = 1;
-  tower = rf[1];
-  reductionTable = SgenerateTable(tower);
-  skel = rf[2];
-  redundantTable = SnewArrayOfFormat(rf[1]);
-  redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
-  reducer = SnewArrayOfFormat(rf[1]);
-  freeRes = SnewArrayOfFormat(rf[1]);
-  bettiTable = SsetBettiTable(rf[1],g);
-
-  height = Length(reductionTable);
-  for (level = 0; level < height; level++) {
-      n = Length(reductionTable[level]);
-      for (i=0; i<n; i++) {
-           Println([level,i]);
-           Print("Processing "); Print([level,i]);
-           if (level == 0) {
-             if (IsNull(redundantTable[level,i])) {
-               bases = freeRes[level];
-               /* Println(["At floor : GB=",i,bases,tower[0,i]]); */
-               pos = SwhereInGB(tower[0,i],rf[3,0]);
-               bases[i] = rf[3,0,pos];
-               /* redundantTable[level,i] = 0;
-               redundantTable_ordinary[level,i] = 0; */
-               freeRes[level] = bases;
-               /* Println(["GB=",i,bases,tower[0,i]]); */
-             }
-           }else{ /* level >= 1 */
-             if (IsNull(redundantTable[level,i])) {
-               bases = freeRes[level];
-               f = SpairAndReduction2(skel,level,i,freeRes,tower,
-                                      ww,redundantTable);
-               if (f[0] != Poly("0")) {
-                  place = f[3];
-                  /* (level-1, place) is the place for f[0], 
-                     which is a newly obtained  GB. */
-#ifdef ORDINARY
-                  redundantTable[level-1,place] = redundant_seq;
-                  redundant_seq++;
-#else
-                  if (f[4] > f[5]) {
-                    /* Zero in the gr-module */
-                    Print("v-degree of [org,remainder] = ");
-                    Println([f[4],f[5]]);
-                    Print("[level,i] = "); Println([level,i]);
-                    redundantTable[level-1,place] = 0;
-                  }else{
-                    redundantTable[level-1,place] = redundant_seq;
-                    redundant_seq++;
-                  }
-#endif
-                  redundantTable_ordinary[level-1,place]
-                     =redundant_seq_ordinary;
-                  redundant_seq_ordinary++;
-                  bases[i] = SunitOfFormat(place,f[1])-f[1];  /* syzygy */
-                  /* redundantTable[level,i] = 0;
-                  redundantTable_ordinary[level,i] = 0; */
-                  /* i must be equal to f[2], I think. Double check. */
-
-                  /* Correction Of Constant */
-                  /* Correction of syzygy */
-                  c2 = f[6];  /* or -f[6]?  Double check. */
-                  Print("c2="); Println(c2);
-                  nn = Length(bases);
-                  for (ii=0; ii<nn;ii++) {
-                     if ((ii != i) && (! IsNull(bases[ii]))) {
-                       m = Length(bases[ii]);
-                       for (jj=0; jj<m; jj++) {
-                         if (jj != place) {
-                           bases[ii,jj] = bases[ii,jj]*c2;
-                         }
-                       } 
-                     }
-                  }
-
-                  Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]);
-                  freeRes[level] = bases;
-                  Print("New freeRes[level] = "); sm1_pmat(freeRes[level]);
-
-                 /* Update the freeRes[level-1] */
-                  Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]);
-                  bases = freeRes[level-1];
-                  bases[place] = f[0];
-                  freeRes[level-1] = bases; 
-                  Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]);
-
-                  reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]);
-                   /* This reducer is different from that of SlaScala(). */
-
-                  reducerBasis = reducer[level-1];
-                  nn = Length(reducerBasis);
-                  for (ii=0; ii<nn;ii++) {
-                     if ((ii != place) && (! IsNull(reducerBasis[ii]))) {
-                       m = Length(reducerBasis[ii]);
-                       for (jj=0; jj<m; jj++) {
-                         if (jj != place) {
-                           reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2;
-                         }
-                       } 
-                     }
-                  }
-                  reducer[level-1] = reducerBasis;
-
-               }else{
-                  /* redundantTable[level,i] = 0; */
-                  bases = freeRes[level];
-                  bases[i] = f[1];  /* Put the syzygy. */
-                  freeRes[level] = bases;
-               }
-             }  /* end of level >= 1 */
-          }
-    } /* i loop */
-
-    /* Triangulate reducer */
-    if (level >= 1) {
-      Println(" ");
-      Print("Triangulating reducer at level "); Println(level-1);
-      Println("freeRes[level]="); sm1_pmat(freeRes[level]);
-      reducerBase = reducer[level-1];
-      Print("reducerBase=");  Println(reducerBase);
-      Println("Compare freeRes[level] and reducerBase (put -1)");
-      m = Length(reducerBase);
-      for (ii=m-1; ii>=0; ii--) {
-        if (!IsNull(reducerBase[ii])) {
-           for (jj=ii-1; jj>=0; jj--) {
-             if (!IsNull(reducerBase[jj])) {
-              if (!IsZero(reducerBase[jj,ii])) {
-                /* reducerBase[ii,ii] should be always constant. */  
-                reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii];
-              }
-             }
-           }
-         }
-       }
-       Println("New reducer");
-       sm1_pmat(reducerBase);
-       reducer[level-1] = reducerBase;
-    }
-
-  } /* level loop */
-  n = Length(freeRes);
-  freeResV = SnewArrayOfFormat(freeRes);
-  for (i=0; i<n; i++) {
-    bases = freeRes[i];
-    bases = Sbases_to_vec(bases,bettiTable[i]);
-    freeResV[i] = bases;
-  }
-
-  /* Mark the non-redundant elements. */
-  for (i=0; i<n; i++) {
-    m = Length(redundantTable[i]);
-    for (jj=0; jj<m; jj++) {
-      if (IsNull(redundantTable[i,jj])) {
-        redundantTable[i,jj] = 0;
-      }
-    }
-  }
-
-
-  return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]);
-}
-
-def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) {
-  local i, j, myindex, p, bases, tower2, gi, gj,
-       si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
-       vdeg,vdeg_reduced,n,c2;
-  Println("SpairAndReduction2 : -------------------------");
-
-  if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
-  p = skel[level,ii];
-  myindex = p[0];  
-  i = myindex[0]; j = myindex[1];
-  bases = freeRes[level-1];
-  Println(["p and bases ",p,bases]);
-  if (IsNull(bases[i]) || IsNull(bases[j])) {
-    Println([level,i,j,bases[i],bases[j]]);
-    Error("level, i, j : bases[i], bases[j]  must not be NULL.");
-  }
-
-  tower2 = StowerOf(tower,level-1);
-  SsetTower(tower2);  
-  Println(["level=",level]);
-  Println(["tower2=",tower2]);
-  /** sm1(" show_ring ");   */
-
-  gi = Stoes_vec(bases[i]);
-  gj = Stoes_vec(bases[j]);
-
-  ssp = Sspolynomial(gi,gj); 
-  si = ssp[0,0];  
-  sj = ssp[0,1];
-  syzHead = si*es^i;
-  /* This will be the head term, I think. But, double check. */
-  Println([si*es^i,sj*es^j]);
-
-  Print("[gi, gj] = "); Println([gi,gj]);
-  sm1(" [(Homogenize)] system_variable message ");
-  Print("Reduce the element "); Println(si*gi+sj*gj);
-  Print("by  "); Println(bases);
-
-  tmp = Sreduction(si*gi+sj*gj, bases);
-
-  Print("result is "); Println(tmp);
-  if (!IsZero(tmp[0])) {
-    Print("Error: base = ");
-    Println(Map(bases,"Stoes_vec"));
-    Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring.");
-  }
-  t_syz = tmp[2];
-  si = si*tmp[1]+t_syz[i];
-  sj = sj*tmp[1]+t_syz[j];
-  t_syz[i] = si; 
-  t_syz[j] = sj;
-
-  c2 = null;
-  /* tmp[0] must be zero */
-  n = Length(t_syz);
-  for (i=0; i<n; i++) {
-     if (IsConstant(t_syz[i])){
-      if (!IsZero(t_syz[i])) {
-       if (IsNull(redundantTable[level-1,i])) {
-         /* i must equal to pos2 below. */
-         c2 = -t_syz[i];
-         tmp[0] = c2*Stoes_vec(freeRes[level-1,i]);
-         t_syz[i] = 0;
-         /* tmp[0] = t_syz . g */
-         /* break; does not work. Use */
-         i = n;
-       }
-      }
-     }
-  }
-
-  /* This is essential part for V-minimal resolution. */
-  /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
-  vdeg = SvDegree(si*gi,tower,level-1,ww); 
-  vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);  
-  Print("vdegree of the original = "); Println(vdeg);
-  Print("vdegree of the remainder = "); Println(vdeg_reduced);
-
-  if (!IsNull(vdeg_reduced)) {
-    if (vdeg_reduced < vdeg) {
-      Println("--- Special in V-minimal!");
-      Println(tmp[0]);
-      Println("syzygy="); sm1_pmat(t_syz);
-      Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]);
-    }
-  }
-
-  SsetTower(StowerOf(tower,level));
-  pos = SwhereInTower(syzHead,tower[level]);
-
-  SsetTower(StowerOf(tower,level-1));
-  pos2 = SwhereInTower(tmp[0],tower[level-1]);
-  ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2];
-  /* pos is the place to put syzygy at level. */
-  /* pos2 is the place to put a new GB at level-1. */   
-  Println(ans);
-  Println("--- end of SpairAndReduction2  ");
-  return(ans);
-}
-
-HelpAdd(["Sminimal_v",
-["It constructs the V-minimal free resolution from the Schreyer resolution",
- "step by step.",
- "This code still contains bugs. It sometimes outputs wrong answer.",
- "Example:   Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", 
- "          v=[[2*x*Dx + 3*y*Dy+6, 0],",
- "             [3*x^2*Dy + 2*y*Dx, 0],",
- "             [0,  x^2+y^2],",
- "             [0,  x*y]];",
- "         a=Sminimal_v(v);",
- "         sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:",
- "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]);
-
-/* This code still contains bugs. It sometimes outputs wrong answer. */
-/* See test12() in minimal-test.k.  */
-/* There may be remaining 1, too */
-def Sminimal_v(g) {
-  local r, freeRes, redundantTable, reducer, maxLevel,
-        minRes, seq, maxSeq, level, betti, q, bases, dr,
-        betti_levelplus, newbases, i, j,qq,tminRes;
-  r = Sschreyer(g);
-  sm1_pmat(r);
-  Debug_Sminimal_v = r;
-  Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v");
-  /* Should I turn off the tower?? */
-  freeRes = r[0];
-  redundantTable = r[1];
-  reducer = r[2];
-  minRes = SnewArrayOfFormat(freeRes);
-  seq = 0;
-  maxSeq = SgetMaxSeq(redundantTable);
-  maxLevel = Length(freeRes);
-  for (level = 0; level < maxLevel; level++) {
-    minRes[level] = freeRes[level];
-  }
-  for (level = 0; level < maxLevel; level++) {
-      betti = Length(freeRes[level]);
-      for (q = betti-1; q>=0; q--) {
-        if (redundantTable[level,q] > 0) {
-          Print("[seq,level,q]="); Println([seq,level,q]);
-          if (level < maxLevel-1) {
-            bases = freeRes[level+1];
-            dr = reducer[level,q];
-            /* dr[q] = -1;  We do not need this in our reducer format. */
-            /* dr[q] should be a non-zero constant. */
-            newbases = SnewArrayOfFormat(bases);
-            betti_levelplus = Length(bases);
-            /*
-               bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
-            */
-            for (i=0; i<betti_levelplus; i++) {
-              newbases[i] = dr[q]*bases[i] - bases[i,q]*dr;
-            }
-            Println(["level, q =", level,q]);
-            Println("bases="); sm1_pmat(bases); 
-            Println("dr="); sm1_pmat(dr);
-            Println("newbases="); sm1_pmat(newbases);
-            minRes[level+1] = newbases;
-            freeRes = minRes;
-#ifdef DEBUG
-            for (qq=q; qq<betti; qq++) {
-                for (i=0; i<betti_levelplus; i++) {
-                  if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) {
-                    Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
-                    Print("redundantTable ="); sm1_pmat(redundantTable[level]);
-                    Error("Stop in Sminimal for debugging.");
-                  }
-                }
-            }
-#endif
-          }
-        }
-      }
-   }
-   tminRes = Stetris(minRes,redundantTable);
-   return([SpruneZeroRow(tminRes), tminRes,
-          [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]);
-  /* r[4] is the redundantTable_ordinary */
-  /* r[0] is the freeResolution */
-}  
-
 /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */
 /* x y (x+y-1)(x-2),  x^3-y^2, x^3 - y^2 z^2,
    x y z (x+y+z-1) seems to be interesting, because the first syzygy
@@ -1668,29 +1426,7 @@ def Skernel(m,v) {
   sm1(" [ m v ] syz /FunctionValue set ");
 }
 
-def test3() {
-  local a1,a2,b1,b2;
-  a1 = Sannfs3("x^3-y^2*z^2");
-  a1 = a1[0];
-  a2 = Sannfs3_laScala2("x^3-y^2*z^2");
-  a2 = a2[0];
-  b1 = a1[1];
-  b2 = a2[1];
-  sm1_pmat(b2);
-  Println("  OVER ");
-  sm1_pmat(b1);
-  return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]);
-}
 
-def test4() {
-  local a,b;
-  a = Sannfs3_laScala2("x^3-y^2*z^2");
-  b = a[0];
-  sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z]));
-  sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z]));
-  return(a);
-}
-
 def sm1_gb(f,v) {
   f =ToString_array(f);
   v = ToString_array(v);
@@ -1731,20 +1467,141 @@ HelpAdd(["IsExact_h",
  "cf. ReParse"
 ]]);
 
-def ReParse(a) {
-  local c;
-  if (IsArray(a)) {
-    c = Map(a,"ReParse");
-  }else{
-    sm1(a," toString . /c set");
+def IsSameIdeal_h(ii,jj,v) {
+  local a;
+  v = ToString_array(v);
+  a = [ii,jj,v];
+  sm1(a," isSameIdeal_h /FunctionValue set ");
+}
+HelpAdd(["IsSameIdeal_h",
+["IsSameIdeal_h(ii,jj,var): bool",
+ "It checks the given ideals are the same or not in D<h> (homogenized Weyl algebra)",
+ "cf. ReParse"
+]]);
+
+/*
+  Output of S* functions may cause a trouble because it uses Schreyer orders.
+  In this case, use ReParse().
+*/
+
+def ScheckIfSchreyer(s) {
+  local ss;
+  sm1(" (report) (grade) switch_function /ss set ");
+  if (ss != "module1v") {
+     Print("ScheckIfSchreyer: from "); Println(s);
+     Error("grade is not module1v");
   }
-  return(c);
+  /*
+  sm1(" (report) (mmLarger) switch_function /ss set ");
+  if (ss != "tower") {
+     Print("ScheckIfSchreyer: from "); Println(s);
+     Error("mmLarger is not tower");
+  }
+  */
+  sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set ");
+  if (ss != 1) {
+     Print("ScheckIfSchreyer: from "); Printl(s);
+     Error("Schreyer order is not set.");
+  }
+  /* More check will be necessary. */
+  return(true);
 }
-HelpAdd(["ReParse",
-["Reparse(obj): obj",
- "It parses the given object in the current ring.",
- "Outputs from SlaScala, Sschreyer may cause a trouble in other functions,",
- "because it uses the Schreyer order.",
- "In this case, ReParse the outputs from these functions.",
- "cf. IsExaxt_h"
+
+def SgetShift(mat,w,m) {
+  local omat;
+  sm1(" mat { w m ord_w<m> {(universalNumber) dc}map } map /omat set");
+  return(Map(omat,"Max")); 
+}
+HelpAdd(["SgetShift",
+["SgetShift(mat,w,m) returns the shift vector of mat with respect to w with the shift m.",
+ "Note that the order of the ring and the weight w must be the same.",
+ "Example:  Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ",
+ "          SgetShift([[x*Dx+1,Dx^2+x^5],[Poly(\"0\"),x],[x,x]],[\"x\",-1,\"Dx\",1],[2,0]):"]]);
+
+def SgetShifts(resmat,w) {
+  local i,n,ans,m0;
+  n = Length(resmat);
+  ans = NewArray(n+1);
+  m0 = NewArray(Length(resmat[0,0]));
+  ans[0] = m0;
+  for (i=0; i<n; i++) {
+    ans[i+1] = SgetShift(resmat[i],w,m0);
+    m0 = ans[i+1];
+  }
+  return(ans);
+}
+HelpAdd(["SgetShifts",
+["SgetShifts(resmat,w) returns the shift vectors of the resolution resmat",
+ " with respect to w with the shift m.",
+ "Note that the order of the ring and the weight w must be the same.",
+ "Zero row is not allowed.",
+ "Example:   a=Sannfs2(\"x^3-y^2\");",
+ "           b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];",
+ "           Sweyl(\"x,y\",[w]); b = Reparse(b);",
+ "           SgetShifts(b,w):"]]);
+
+def Sinit_w(resmat,w) {
+  local shifts,ans,n,i,m,mat,j;
+  shifts = SgetShifts(resmat,w);
+  n = Length(resmat);
+  ans = NewArray(n);
+  for (i=0; i<n; i++) {
+    m = shifts[i];
+    mat = ScopyArray(resmat[i]);
+    for (j=0; j<Length(mat); j++) {
+      mat[j] = Init_w_m(mat[j],w,m);
+    }
+    ans[i] = mat;
+  }
+  return(ans);
+}
+HelpAdd(["Sinit_w",
+["Sinit_w(resmat,w) returns the initial of the complex resmat with respect to the weight w.",
+ "Example:   a=Sannfs2(\"x^3-y^2\");",
+ "           b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];",
+ "           Sweyl(\"x,y\",[w]); b = Reparse(b);",
+ "           c=Sinit_w(b,w); c:"
 ]]);
+
+/* This method does not work, because we have zero rows. 
+   Think about it later. */
+def SbettiTable(rtable) {
+  local ans,i,j,pp;
+  ans = SnewArrayOfFormat(rtable);
+  for (i=0; i<Length(rtable); i++) {
+    pp = 0;
+    for (j=0; j<Length(rtable[i]); j++) {
+       if (rtable[i,j] != 0) {pp = pp+1;}
+    }
+    ans[i] = pp;
+  }
+  return(ans);
+}
+
+def BfRoots1(G,V) {
+   local bb,ans;
+   sm1(" /BFparlist [ ] def ");
+   if (IsString(V)) {
+      sm1(" [ V to_records pop ] /V set ");
+   }else {
+     sm1(" V { toString } map /V set ");  
+   }
+   sm1(" /BFvarlist V def ");
+  
+   sm1(" G flatten { toString } map  /G set ");
+   sm1(" G V bfm /bb set ");
+   if (IsSm1Integer(bb)) {
+     return([ ]);
+   }
+   sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
+   return([ans, bb]);
+}
+
+HelpAdd(["BfRoots1",
+["BfRoots1(g,v) returns the integral roots of g with respect to the weight",
+ "vector (1,1,...,1) and the b-function itself",
+ "Example:  BfRoots1([x*Dx-2, y*Dy-3],[x,y]);"
+]]);
+
+
+