version 1.9, 2000/05/06 13:41:12 |
version 1.13, 2000/06/08 08:37:53 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.8 2000/05/06 10:45:43 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.12 2000/05/24 15:24:54 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
|
|
ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
*/ |
*/ |
#define OFFSET 0 |
#define OFFSET 0 |
#define TOTAL_STRATEGY |
/* #define TOTAL_STRATEGY */ |
/* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
/* Test sequences. |
/* Test sequences. |
Use load["minimal.k"];; |
Use load["minimal.k"];; |
Line 1044 def Sannfs2(f) { |
|
Line 1044 def Sannfs2(f) { |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
/* return(Sminimal(pp)); */ |
/* return(Sminimal(pp)); */ |
} |
} |
|
|
|
HelpAdd(["Sannfs2", |
|
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
|
"See also Sminimal_v, Sannfs3.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:", |
|
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:" |
|
]]); |
|
|
/* Do not forget to turn on TOTAL_STRATEGY */ |
/* Do not forget to turn on TOTAL_STRATEGY */ |
def Sannfs2_laScala(f) { |
def Sannfs2_laScala(f) { |
local p,pp; |
local p,pp; |
Line 1063 def Sannfs2_laScala(f) { |
|
Line 1076 def Sannfs2_laScala(f) { |
|
return(Sminimal(pp)); |
return(Sminimal(pp)); |
} |
} |
|
|
|
def Sannfs2_laScala2(f) { |
|
local p,pp; |
|
p = Sannfs(f,"x,y"); |
|
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
p = [p]; |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
pp = Map(p[0],"Spoly"); |
|
return(Sminimal(pp)); |
|
} |
|
|
def Sannfs3(f) { |
def Sannfs3(f) { |
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
Line 1072 def Sannfs3(f) { |
|
Line 1096 def Sannfs3(f) { |
|
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
} |
} |
|
|
|
HelpAdd(["Sannfs3", |
|
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
|
"See also Sminimal_v, Sannfs2.", |
|
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]: b[2]*b[1]:"]]); |
|
|
/* |
/* |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
Line 1080 def Sannfs3(f) { |
|
Line 1112 def Sannfs3(f) { |
|
|
|
*/ |
*/ |
|
|
|
def Sannfs3_laScala2(f) { |
|
local p,pp; |
|
p = Sannfs(f,"x,y,z"); |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1], |
|
["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
|
pp = Map(p,"Spoly"); |
|
return(Sminimal(pp)); |
|
} |
|
|
|
|
/* The below does not use LaScala-Stillman's algorithm. */ |
/* The below does not use LaScala-Stillman's algorithm. */ |
Line 1331 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1372 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Print("vdegree of the original = "); Println(vdeg); |
Print("vdegree of the original = "); Println(vdeg); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
|
|
|
if (!IsNull(vdeg_reduced)) { |
|
if (vdeg_reduced < vdeg) { |
|
Println("--- Special in V-minimal!"); |
|
Println(tmp[0]); |
|
Println("syzygy="); sm1_pmat(t_syz); |
|
Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]); |
|
} |
|
} |
|
|
|
|
pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
Line 1341 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1392 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
return(ans); |
return(ans); |
} |
} |
|
|
|
HelpAdd(["Sminimal_v", |
|
["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
"step by step.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal_v(v);", |
|
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
|
def Sminimal_v(g) { |
def Sminimal_v(g) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq,tminRes; |
r = Sschreyer(g); |
r = Sschreyer(g); |
sm1_pmat(r); |
sm1_pmat(r); |
Debug_Sminimal_v = r; |
Debug_Sminimal_v = r; |
Line 1399 def Sminimal_v(g) { |
|
Line 1463 def Sminimal_v(g) { |
|
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
|
return([SpruneZeroRow(tminRes), tminRes, |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
} |
} |
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
|
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
|
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
|
contains 1. |
|
*/ |
|
|
|
def CopyArray(m) { |
|
local ans,i,n; |
|
if (IsArray(m)) { |
|
n = Length(m); |
|
ans = NewArray(n); |
|
for (i=0; i<n; i++) { |
|
ans[i] = CopyArray(m[i]); |
|
} |
|
return(ans); |
|
}else{ |
|
return(m); |
|
} |
|
} |
|
HelpAdd(["CopyArray", |
|
["It duplicates the argument array recursively.", |
|
"Example: m=[1,[2,3]];", |
|
" a=CopyArray(m); a[1] = \"Hello\";", |
|
" Println(m); Println(a);"]]); |
|
|
|
def IsZeroVector(m) { |
|
local n,i; |
|
n = Length(m); |
|
for (i=0; i<n; i++) { |
|
if (!IsZero(m[i])) { |
|
return(false); |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def SpruneZeroRow(res) { |
|
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
|
|
|
minRes = CopyArray(res); |
|
n = Length(minRes); |
|
for (i=0; i<n; i++) { |
|
base = minRes[i]; |
|
m = Length(base); |
|
if (i != n-1) { |
|
base2 = minRes[i+1]; |
|
base2 = Transpose(base2); |
|
} |
|
newbase = [ ]; |
|
newbase2 = [ ]; |
|
for (j=0; j<m; j++) { |
|
if (!IsZeroVector(base[j])) { |
|
newbase = Append(newbase,base[j]); |
|
if (i != n-1) { |
|
newbase2 = Append(newbase2,base2[j]); |
|
} |
|
} |
|
} |
|
minRes[i] = newbase; |
|
if (i != n-1) { |
|
if (newbase2 == [ ]) { |
|
minRes[i+1] = [ ]; |
|
}else{ |
|
minRes[i+1] = Transpose(newbase2); |
|
} |
|
} |
|
} |
|
|
|
newMinRes = [ ]; |
|
n = Length(minRes); |
|
i = 0; |
|
while (i < n ) { |
|
base = minRes[i]; |
|
if (base == [ ]) { |
|
i = n; /* break; */ |
|
}else{ |
|
newMinRes = Append(newMinRes,base); |
|
} |
|
i++; |
|
} |
|
return(newMinRes); |
|
} |
|
|
|
def testAnnfs2(f) { |
|
local a,i,n; |
|
a = Sannfs2(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
def testAnnfs3(f) { |
|
local a,i,n; |
|
a = Sannfs3(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
|
|
def ToString_array(p) { |
|
local ans; |
|
if (IsArray(p)) { |
|
ans = Map(p,"ToString_array"); |
|
}else{ |
|
ans = ToString(p); |
|
} |
|
return(ans); |
|
} |
|
|
|
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
|
|
|
def sm1_res_div(I,J,V) { |
|
I = ToString_array(I); |
|
J = ToString_array(J); |
|
V = ToString_array(V); |
|
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
|
} |
|
|
|
/* It has not yet been working */ |
|
def sm1_res_kernel_image(m,n,v) { |
|
m = ToString_array(m); |
|
n = ToString_array(n); |
|
v = ToString_array(v); |
|
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
|
} |
|
def Skernel(m,v) { |
|
m = ToString_array(m); |
|
v = ToString_array(v); |
|
sm1(" [ m v ] syz /FunctionValue set "); |
|
} |
|
|
|
def test3() { |
|
local a1,a2,b1,b2; |
|
a1 = Sannfs3("x^3-y^2*z^2"); |
|
a1 = a1[0]; |
|
a2 = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
a2 = a2[0]; |
|
b1 = a1[1]; |
|
b2 = a2[1]; |
|
sm1_pmat(b2); |
|
Println(" OVER "); |
|
sm1_pmat(b1); |
|
return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]); |
|
} |
|
|
|
def test4() { |
|
local a,b; |
|
a = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
b = a[0]; |
|
sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z])); |
|
sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z])); |
|
return(a); |
|
} |
|
|
|
def sm1_gb(f,v) { |
|
f =ToString_array(f); |
|
v = ToString_array(v); |
|
sm1(" [f v] gb /FunctionValue set "); |
|
} |
|
|
|
def SisExact_h(c,v) { |
|
local a; |
|
v = ToString_array(v); |
|
a = [c,v]; |
|
sm1(a," isExact /FunctionValue set "); |
|
} |
|
|
|
def SisComplex(a) { |
|
local n,i,j,k,b,p,q; |
|
n = Length(a); |
|
for (i=0; i<n-1; i++) { |
|
if (Length(a[i+1]) != 0) { |
|
b = a[i+1]*a[i]; |
|
p = Length(b); q = Length(b[0]); |
|
for (j=0; j<p; j++) { |
|
for (k=0; k<q; k++) { |
|
if (!IsZero(b[j,k])) { |
|
Print("Is is not complex at "); |
|
Println([i,j,k]); |
|
return(false); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return(true); |
|
} |
|
|