version 1.9, 2000/05/06 13:41:12 |
version 1.10, 2000/05/07 02:10:44 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.8 2000/05/06 10:45:43 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.9 2000/05/06 13:41:12 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
Line 1044 def Sannfs2(f) { |
|
Line 1044 def Sannfs2(f) { |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
/* return(Sminimal(pp)); */ |
/* return(Sminimal(pp)); */ |
} |
} |
|
|
|
HelpAdd(["Sannfs2", |
|
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
|
"See also Sminimal_v, Sannfs3.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:", |
|
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:" |
|
]]); |
|
|
/* Do not forget to turn on TOTAL_STRATEGY */ |
/* Do not forget to turn on TOTAL_STRATEGY */ |
def Sannfs2_laScala(f) { |
def Sannfs2_laScala(f) { |
local p,pp; |
local p,pp; |
Line 1072 def Sannfs3(f) { |
|
Line 1085 def Sannfs3(f) { |
|
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
} |
} |
|
|
|
HelpAdd(["Sannfs3", |
|
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
|
"See also Sminimal_v, Sannfs2.", |
|
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]: b[2]*b[1]:"]]); |
|
|
/* |
/* |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
Line 1341 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1362 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
return(ans); |
return(ans); |
} |
} |
|
|
|
HelpAdd(["Sminimal_v", |
|
["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
"step by step.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal_v(v);", |
|
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
|
def Sminimal_v(g) { |
def Sminimal_v(g) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq,tminRes; |
r = Sschreyer(g); |
r = Sschreyer(g); |
sm1_pmat(r); |
sm1_pmat(r); |
Debug_Sminimal_v = r; |
Debug_Sminimal_v = r; |
Line 1399 def Sminimal_v(g) { |
|
Line 1433 def Sminimal_v(g) { |
|
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
|
return([SpruneZeroRow(tminRes), tminRes, |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
} |
} |
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
|
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
|
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
|
contains 1. |
|
*/ |
|
|
|
def CopyArray(m) { |
|
local ans,i,n; |
|
if (IsArray(m)) { |
|
n = Length(m); |
|
ans = NewArray(n); |
|
for (i=0; i<n; i++) { |
|
ans[i] = CopyArray(m[i]); |
|
} |
|
return(ans); |
|
}else{ |
|
return(m); |
|
} |
|
} |
|
HelpAdd(["CopyArray", |
|
["It duplicates the argument array recursively.", |
|
"Example: m=[1,[2,3]];", |
|
" a=CopyArray(m); a[1] = \"Hello\";", |
|
" Println(m); Println(a);"]]); |
|
|
|
def IsZeroVector(m) { |
|
local n,i; |
|
n = Length(m); |
|
for (i=0; i<n; i++) { |
|
if (!IsZero(m[i])) { |
|
return(false); |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def SpruneZeroRow(res) { |
|
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
|
|
|
minRes = CopyArray(res); |
|
n = Length(minRes); |
|
for (i=0; i<n; i++) { |
|
base = minRes[i]; |
|
m = Length(base); |
|
if (i != n-1) { |
|
base2 = minRes[i+1]; |
|
base2 = Transpose(base2); |
|
} |
|
newbase = [ ]; |
|
newbase2 = [ ]; |
|
for (j=0; j<m; j++) { |
|
if (!IsZeroVector(base[j])) { |
|
newbase = Append(newbase,base[j]); |
|
if (i != n-1) { |
|
newbase2 = Append(newbase2,base2[j]); |
|
} |
|
} |
|
} |
|
minRes[i] = newbase; |
|
if (i != n-1) { |
|
if (newbase2 == [ ]) { |
|
minRes[i+1] = [ ]; |
|
}else{ |
|
minRes[i+1] = Transpose(newbase2); |
|
} |
|
} |
|
} |
|
|
|
newMinRes = [ ]; |
|
n = Length(minRes); |
|
i = 0; |
|
while (i < n ) { |
|
base = minRes[i]; |
|
if (base == [ ]) { |
|
i = n; /* break; */ |
|
}else{ |
|
newMinRes = Append(newMinRes,base); |
|
} |
|
i++; |
|
} |
|
return(newMinRes); |
|
} |
|
|
|
def testAnnfs2(f) { |
|
local a,i,n; |
|
a = Sannfs2(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
def testAnnfs3(f) { |
|
local a,i,n; |
|
a = Sannfs3(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |