| version 1.7, 2000/05/06 10:35:33 |
version 1.16, 2000/06/15 07:38:36 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.6 2000/05/06 07:58:37 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.15 2000/06/14 07:44:05 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
|
|
| ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
| */ |
*/ |
| #define OFFSET 0 |
#define OFFSET 0 |
| #define TOTAL_STRATEGY |
#define TOTAL_STRATEGY 1 |
| /* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
| Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
| [ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable |
| [(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable |
| ] pop popEnv "); |
] pop popEnv "); |
| |
/* sm1("(hoge) message show_ring "); */ |
| } |
} |
| |
|
| def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
| local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
| gbasis; |
gbasis, nohomog; |
| |
nohomog = false; |
| |
count = -1; |
| if (Length(Arglist) >= 2) { |
if (Length(Arglist) >= 2) { |
| if (IsInteger(opt)) count = opt; |
if (IsInteger(opt)) { |
| |
count = opt; |
| |
}else if (IsString(opt)) { |
| |
if (opt == "homogenized") { |
| |
nohomog = true; |
| |
}else{ |
| |
Println("Warning: unknown option"); |
| |
Println(opt); |
| |
} |
| |
} |
| }else{ |
}else{ |
| count = -1; |
count = -1; |
| } |
} |
| Line 152 def SresolutionFrameWithTower(g,opt) { |
|
| Line 164 def SresolutionFrameWithTower(g,opt) { |
|
| */ |
*/ |
| |
|
| sm1(" (mmLarger) (matrix) switch_function "); |
sm1(" (mmLarger) (matrix) switch_function "); |
| g = Map(g,"Shomogenize"); |
if (! nohomog) { |
| |
Println("Automatic homogenization."); |
| |
g = Map(g,"Shomogenize"); |
| |
}else{ |
| |
Println("No automatic homogenization."); |
| |
} |
| if (SonAutoReduce) { |
if (SonAutoReduce) { |
| sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
| sm1("[ (AutoReduce) 1 ] system_variable "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
| Line 192 def SresolutionFrameWithTower(g,opt) { |
|
| Line 209 def SresolutionFrameWithTower(g,opt) { |
|
| } |
} |
| HelpAdd(["SresolutionFrameWithTower", |
HelpAdd(["SresolutionFrameWithTower", |
| ["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
| |
"option: \"homogenized\" (no automatic homogenization) ", |
| "Example: Sweyl(\"x,y\");", |
"Example: Sweyl(\"x,y\");", |
| " a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
| |
|
| def SresolutionFrame(f,opt) { |
def SresolutionFrame(f,opt) { |
| local ans; |
local ans; |
| ans = SresolutionFrameWithTower(f); |
ans = SresolutionFrameWithTower(f,opt); |
| return(ans[0]); |
return(ans[0]); |
| } |
} |
| /* ---------------------------- */ |
/* ---------------------------- */ |
| Line 291 def Sres0FrameWithSkelton(g) { |
|
| Line 309 def Sres0FrameWithSkelton(g) { |
|
| |
|
| |
|
| def StotalDegree(f) { |
def StotalDegree(f) { |
| sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
| |
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
| |
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
| |
return(d0); |
| } |
} |
| |
|
| /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
| Line 359 def Sdegree(f,tower,level) { |
|
| Line 380 def Sdegree(f,tower,level) { |
|
| |
|
| def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
| local height, n,i,j, ans, ans_at_each_floor; |
local height, n,i,j, ans, ans_at_each_floor; |
| |
|
| |
/* |
| |
Print("SgenerateTable: tower=");Println(tower); |
| |
sm1(" print_switch_status "); */ |
| height = Length(tower); |
height = Length(tower); |
| ans = NewArray(height); |
ans = NewArray(height); |
| for (i=0; i<height; i++) { |
for (i=0; i<height; i++) { |
| Line 434 def SmaxOfStrategy(a) { |
|
| Line 459 def SmaxOfStrategy(a) { |
|
| } |
} |
| |
|
| |
|
| def SlaScala(g) { |
def SlaScala(g,opt) { |
| local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
| strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
| freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
| Line 443 def SlaScala(g) { |
|
| Line 468 def SlaScala(g) { |
|
| /* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
| ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
| Print("WeightOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
| rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g,opt); |
| |
Print("rf="); sm1_pmat(rf); |
| redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| tower = rf[1]; |
tower = rf[1]; |
| |
|
| |
Println("Generating reduction table which gives an order of reduction."); |
| |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
| |
Print("tower"); Println(tower); |
| reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
| |
Print("reductionTable="); sm1_pmat(reductionTable); |
| |
|
| skel = rf[2]; |
skel = rf[2]; |
| redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
| redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
| Line 467 def SlaScala(g) { |
|
| Line 499 def SlaScala(g) { |
|
| Println([level,i]); |
Println([level,i]); |
| reductionTable_tmp[i] = -200000; |
reductionTable_tmp[i] = -200000; |
| if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
| Print("Processing "); Print([level,i]); |
Print("Processing [level,i]= "); Print([level,i]); |
| Print(" Strategy = "); Println(strategy); |
Print(" Strategy = "); Println(strategy); |
| if (level == 0) { |
if (level == 0) { |
| if (IsNull(redundantTable[level,i])) { |
if (IsNull(redundantTable[level,i])) { |
| Line 661 def MonomialPart(f) { |
|
| Line 693 def MonomialPart(f) { |
|
| sm1(" [(lmonom) f] gbext /FunctionValue set "); |
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
| } |
} |
| |
|
| |
/* WARNING: |
| |
When you use SwhereInTower, you have to change gbList |
| |
as below. Ofcourse, you should restrore the gbList |
| |
SsetTower(StowerOf(tower,level)); |
| |
pos = SwhereInTower(syzHead,tower[level]); |
| |
*/ |
| def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
| local i,n,p,q; |
local i,n,p,q; |
| if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
| Line 697 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 735 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
| SsetTower(tower2); |
SsetTower(tower2); |
| |
Println(["level=",level]); |
| |
Println(["tower2=",tower2]); |
| /** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
| |
|
| gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
| Line 730 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 770 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
| t_syz[i] = si; |
t_syz[i] = si; |
| t_syz[j] = sj; |
t_syz[j] = sj; |
| |
|
| |
SsetTower(StowerOf(tower,level)); |
| pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
| |
|
| |
SsetTower(StowerOf(tower,level-1)); |
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
| /* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
| Line 843 def Sbases_to_vec(bases,size) { |
|
| Line 887 def Sbases_to_vec(bases,size) { |
|
| return(newbases); |
return(newbases); |
| } |
} |
| |
|
| def Sminimal(g) { |
HelpAdd(["Sminimal", |
| |
["It constructs the V-minimal free resolution by LaScala-Stillman's algorithm", |
| |
"option: \"homogenized\" (no automatic homogenization ", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal(v);", |
| |
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" b = ReParse(a[0]); sm1_pmat(b); ", |
| |
" IsExact_h(b,[x,y]):", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| |
def Sminimal(g,opt) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes; |
| r = SlaScala(g); |
if (Length(Arglist) < 2) { |
| |
opt = null; |
| |
} |
| |
ScheckIfSchreyer("Sminimal:0"); |
| |
r = SlaScala(g,opt); |
| /* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
| |
ScheckIfSchreyer("Sminimal:1"); |
| freeRes = r[0]; |
freeRes = r[0]; |
| redundantTable = r[1]; |
redundantTable = r[1]; |
| reducer = r[2]; |
reducer = r[2]; |
| Line 904 def Sminimal(g) { |
|
| Line 967 def Sminimal(g) { |
|
| } |
} |
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
| |
return([SpruneZeroRow(tminRes), tminRes, |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| Line 1044 def Sannfs2(f) { |
|
| Line 1108 def Sannfs2(f) { |
|
| Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
| ["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
| /* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
| |
|
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
| /* return(Sminimal(pp)); */ |
/* return(Sminimal(pp)); */ |
| } |
} |
| |
|
| |
HelpAdd(["Sannfs2", |
| |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
| |
"See also Sminimal_v, Sannfs3.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:", |
| |
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:" |
| |
]]); |
| |
|
| /* Do not forget to turn on TOTAL_STRATEGY */ |
/* Do not forget to turn on TOTAL_STRATEGY */ |
| def Sannfs2_laScala(f) { |
def Sannfs2_laScala(f) { |
| local p,pp; |
local p,pp; |
| Line 1063 def Sannfs2_laScala(f) { |
|
| Line 1140 def Sannfs2_laScala(f) { |
|
| return(Sminimal(pp)); |
return(Sminimal(pp)); |
| } |
} |
| |
|
| |
def Sannfs2_laScala2(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y"); |
| |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| |
p = [p]; |
| |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
| |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| |
pp = Map(p[0],"Spoly"); |
| |
return(Sminimal(pp)); |
| |
} |
| |
|
| def Sannfs3(f) { |
def Sannfs3(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
| Line 1072 def Sannfs3(f) { |
|
| Line 1160 def Sannfs3(f) { |
|
| return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
| } |
} |
| |
|
| |
HelpAdd(["Sannfs3", |
| |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
| |
"See also Sminimal_v, Sannfs2.", |
| |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]: b[2]*b[1]:"]]); |
| |
|
| /* |
/* |
| The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| Line 1080 def Sannfs3(f) { |
|
| Line 1176 def Sannfs3(f) { |
|
| |
|
| */ |
*/ |
| |
|
| |
def Sannfs3_laScala2(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y,z"); |
| |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
| |
Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1], |
| |
["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| |
pp = Map(p,"Spoly"); |
| |
return(Sminimal(pp)); |
| |
} |
| |
|
| |
|
| /* The below does not use LaScala-Stillman's algorithm. */ |
/* The below does not use LaScala-Stillman's algorithm. */ |
| Line 1095 def Sschreyer(g) { |
|
| Line 1200 def Sschreyer(g) { |
|
| rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g); |
| redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| tower = rf[1]; |
tower = rf[1]; |
| |
Println("Generating reduction table which gives an order of reduction."); |
| |
Println("But, you are in Sschreyer...., you may not use LaScala-Stillman"); |
| |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
| |
Print("tower"); Println(tower); |
| reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
| skel = rf[2]; |
skel = rf[2]; |
| redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
| Line 1153 def Sschreyer(g) { |
|
| Line 1262 def Sschreyer(g) { |
|
| /* i must be equal to f[2], I think. Double check. */ |
/* i must be equal to f[2], I think. Double check. */ |
| |
|
| /* Correction Of Constant */ |
/* Correction Of Constant */ |
| |
/* Correction of syzygy */ |
| c2 = f[6]; /* or -f[6]? Double check. */ |
c2 = f[6]; /* or -f[6]? Double check. */ |
| Print("c2="); Println(c2); |
Print("c2="); Println(c2); |
| nn = Length(bases); |
nn = Length(bases); |
| for (ii=0; ii<nn;ii++) { |
for (ii=0; ii<nn;ii++) { |
| if ((ii != place) && (! IsNull(bases[ii]))) { |
if ((ii != i) && (! IsNull(bases[ii]))) { |
| m = Length(bases[ii]); |
m = Length(bases[ii]); |
| for (jj=0; jj<m; jj++) { |
for (jj=0; jj<m; jj++) { |
| if (jj != place) { |
if (jj != place) { |
| Line 1178 def Sschreyer(g) { |
|
| Line 1288 def Sschreyer(g) { |
|
| freeRes[level-1] = bases; |
freeRes[level-1] = bases; |
| Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
| |
|
| reducer[level-1,place] = f[1]; |
reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
| |
/* This reducer is different from that of SlaScala(). */ |
| |
|
| |
reducerBasis = reducer[level-1]; |
| |
nn = Length(reducerBasis); |
| |
for (ii=0; ii<nn;ii++) { |
| |
if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
| |
m = Length(reducerBasis[ii]); |
| |
for (jj=0; jj<m; jj++) { |
| |
if (jj != place) { |
| |
reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
| |
} |
| |
} |
| |
} |
| |
} |
| |
reducer[level-1] = reducerBasis; |
| |
|
| }else{ |
}else{ |
| /* redundantTable[level,i] = 0; */ |
/* redundantTable[level,i] = 0; */ |
| bases = freeRes[level]; |
bases = freeRes[level]; |
| Line 1193 def Sschreyer(g) { |
|
| Line 1319 def Sschreyer(g) { |
|
| if (level >= 1) { |
if (level >= 1) { |
| Println(" "); |
Println(" "); |
| Print("Triangulating reducer at level "); Println(level-1); |
Print("Triangulating reducer at level "); Println(level-1); |
| |
Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
| reducerBase = reducer[level-1]; |
reducerBase = reducer[level-1]; |
| Print("reducerBase="); Println(reducerBase); |
Print("reducerBase="); Println(reducerBase); |
| |
Println("Compare freeRes[level] and reducerBase (put -1)"); |
| m = Length(reducerBase); |
m = Length(reducerBase); |
| for (ii=m-1; ii>=0; ii--) { |
for (ii=m-1; ii>=0; ii--) { |
| if (!IsNull(reducerBase[ii])) { |
if (!IsNull(reducerBase[ii])) { |
| for (jj=ii-1; jj>=0; jj--) { |
for (jj=ii-1; jj>=0; jj--) { |
| if (!IsNull(reducerBase[jj])) { |
if (!IsNull(reducerBase[jj])) { |
| if (!IsZero(reducerBase[jj,ii])) { |
if (!IsZero(reducerBase[jj,ii])) { |
| reducerBase[jj] = reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
/* reducerBase[ii,ii] should be always constant. */ |
| |
reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
| } |
} |
| } |
} |
| } |
} |
| Line 1254 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| Line 1383 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
| SsetTower(tower2); |
SsetTower(tower2); |
| |
Println(["level=",level]); |
| |
Println(["tower2=",tower2]); |
| /** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
| |
|
| gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
| Line 1311 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| Line 1442 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| Print("vdegree of the original = "); Println(vdeg); |
Print("vdegree of the original = "); Println(vdeg); |
| Print("vdegree of the remainder = "); Println(vdeg_reduced); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
| |
|
| |
if (!IsNull(vdeg_reduced)) { |
| |
if (vdeg_reduced < vdeg) { |
| |
Println("--- Special in V-minimal!"); |
| |
Println(tmp[0]); |
| |
Println("syzygy="); sm1_pmat(t_syz); |
| |
Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]); |
| |
} |
| |
} |
| |
|
| |
SsetTower(StowerOf(tower,level)); |
| pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
| |
|
| |
SsetTower(StowerOf(tower,level-1)); |
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
| /* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
| /* pos2 is the place to put a new GB at level-1. */ |
/* pos2 is the place to put a new GB at level-1. */ |
| Println(ans); |
Println(ans); |
| Println(" "); |
Println("--- end of SpairAndReduction2 "); |
| return(ans); |
return(ans); |
| } |
} |
| |
|
| |
HelpAdd(["Sminimal_v", |
| |
["It constructs the V-minimal free resolution from the Schreyer resolution", |
| |
"step by step.", |
| |
"This code still contains bugs. It sometimes outputs wrong answer.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal_v(v);", |
| |
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| |
/* This code still contains bugs. It sometimes outputs wrong answer. */ |
| |
/* See test12() in minimal-test.k. */ |
| |
/* There may be remaining 1, too */ |
| def Sminimal_v(g) { |
def Sminimal_v(g) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq,tminRes; |
| r = Sschreyer(g); |
r = Sschreyer(g); |
| sm1_pmat(r); |
sm1_pmat(r); |
| Debug_Sminimal_v = r; |
Debug_Sminimal_v = r; |
| Line 1348 def Sminimal_v(g) { |
|
| Line 1507 def Sminimal_v(g) { |
|
| if (level < maxLevel-1) { |
if (level < maxLevel-1) { |
| bases = freeRes[level+1]; |
bases = freeRes[level+1]; |
| dr = reducer[level,q]; |
dr = reducer[level,q]; |
| dr[q] = -1; |
/* dr[q] = -1; We do not need this in our reducer format. */ |
| |
/* dr[q] should be a non-zero constant. */ |
| newbases = SnewArrayOfFormat(bases); |
newbases = SnewArrayOfFormat(bases); |
| betti_levelplus = Length(bases); |
betti_levelplus = Length(bases); |
| /* |
/* |
| bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
| */ |
*/ |
| for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
| newbases[i] = bases[i] + bases[i,q]*dr; |
newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
| } |
} |
| Println(["level, q =", level,q]); |
Println(["level, q =", level,q]); |
| Println("bases="); sm1_pmat(bases); |
Println("bases="); sm1_pmat(bases); |
| Line 1364 def Sminimal_v(g) { |
|
| Line 1524 def Sminimal_v(g) { |
|
| minRes[level+1] = newbases; |
minRes[level+1] = newbases; |
| freeRes = minRes; |
freeRes = minRes; |
| #ifdef DEBUG |
#ifdef DEBUG |
| /* Do it later. |
for (qq=q; qq<betti; qq++) { |
| for (qq=0; qq<betti; qq++) { |
|
| for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
| if (!IsZero(newbases[i,qq])) { |
if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
| Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
| Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
| Error("Stop in Sminimal for debugging."); |
Error("Stop in Sminimal for debugging."); |
| } |
} |
| } |
} |
| } |
} |
| */ |
|
| #endif |
#endif |
| } |
} |
| } |
} |
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
| |
return([SpruneZeroRow(tminRes), tminRes, |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| } |
} |
| |
|
| /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
| |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
| |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
| |
contains 1. |
| |
*/ |
| |
|
| |
def CopyArray(m) { |
| |
local ans,i,n; |
| |
if (IsArray(m)) { |
| |
n = Length(m); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
ans[i] = CopyArray(m[i]); |
| |
} |
| |
return(ans); |
| |
}else{ |
| |
return(m); |
| |
} |
| |
} |
| |
HelpAdd(["CopyArray", |
| |
["It duplicates the argument array recursively.", |
| |
"Example: m=[1,[2,3]];", |
| |
" a=CopyArray(m); a[1] = \"Hello\";", |
| |
" Println(m); Println(a);"]]); |
| |
|
| |
def IsZeroVector(m) { |
| |
local n,i; |
| |
n = Length(m); |
| |
for (i=0; i<n; i++) { |
| |
if (!IsZero(m[i])) { |
| |
return(false); |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|
| |
def SpruneZeroRow(res) { |
| |
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
| |
|
| |
minRes = CopyArray(res); |
| |
n = Length(minRes); |
| |
for (i=0; i<n; i++) { |
| |
base = minRes[i]; |
| |
m = Length(base); |
| |
if (i != n-1) { |
| |
base2 = minRes[i+1]; |
| |
base2 = Transpose(base2); |
| |
} |
| |
newbase = [ ]; |
| |
newbase2 = [ ]; |
| |
for (j=0; j<m; j++) { |
| |
if (!IsZeroVector(base[j])) { |
| |
newbase = Append(newbase,base[j]); |
| |
if (i != n-1) { |
| |
newbase2 = Append(newbase2,base2[j]); |
| |
} |
| |
} |
| |
} |
| |
minRes[i] = newbase; |
| |
if (i != n-1) { |
| |
if (newbase2 == [ ]) { |
| |
minRes[i+1] = [ ]; |
| |
}else{ |
| |
minRes[i+1] = Transpose(newbase2); |
| |
} |
| |
} |
| |
} |
| |
|
| |
newMinRes = [ ]; |
| |
n = Length(minRes); |
| |
i = 0; |
| |
while (i < n ) { |
| |
base = minRes[i]; |
| |
if (base == [ ]) { |
| |
i = n; /* break; */ |
| |
}else{ |
| |
newMinRes = Append(newMinRes,base); |
| |
} |
| |
i++; |
| |
} |
| |
return(newMinRes); |
| |
} |
| |
|
| |
def testAnnfs2(f) { |
| |
local a,i,n; |
| |
a = Sannfs2(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
def testAnnfs3(f) { |
| |
local a,i,n; |
| |
a = Sannfs3(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
|
| |
def ToString_array(p) { |
| |
local ans; |
| |
if (IsArray(p)) { |
| |
ans = Map(p,"ToString_array"); |
| |
}else{ |
| |
ans = ToString(p); |
| |
} |
| |
return(ans); |
| |
} |
| |
|
| |
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
| |
|
| |
def sm1_res_div(I,J,V) { |
| |
I = ToString_array(I); |
| |
J = ToString_array(J); |
| |
V = ToString_array(V); |
| |
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
| |
} |
| |
|
| |
/* It has not yet been working */ |
| |
def sm1_res_kernel_image(m,n,v) { |
| |
m = ToString_array(m); |
| |
n = ToString_array(n); |
| |
v = ToString_array(v); |
| |
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
| |
} |
| |
def Skernel(m,v) { |
| |
m = ToString_array(m); |
| |
v = ToString_array(v); |
| |
sm1(" [ m v ] syz /FunctionValue set "); |
| |
} |
| |
|
| |
def test3() { |
| |
local a1,a2,b1,b2; |
| |
a1 = Sannfs3("x^3-y^2*z^2"); |
| |
a1 = a1[0]; |
| |
a2 = Sannfs3_laScala2("x^3-y^2*z^2"); |
| |
a2 = a2[0]; |
| |
b1 = a1[1]; |
| |
b2 = a2[1]; |
| |
sm1_pmat(b2); |
| |
Println(" OVER "); |
| |
sm1_pmat(b1); |
| |
return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]); |
| |
} |
| |
|
| |
def test4() { |
| |
local a,b; |
| |
a = Sannfs3_laScala2("x^3-y^2*z^2"); |
| |
b = a[0]; |
| |
sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z])); |
| |
sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z])); |
| |
return(a); |
| |
} |
| |
|
| |
def sm1_gb(f,v) { |
| |
f =ToString_array(f); |
| |
v = ToString_array(v); |
| |
sm1(" [f v] gb /FunctionValue set "); |
| |
} |
| |
|
| |
|
| |
def SisComplex(a) { |
| |
local n,i,j,k,b,p,q; |
| |
n = Length(a); |
| |
for (i=0; i<n-1; i++) { |
| |
if (Length(a[i+1]) != 0) { |
| |
b = a[i+1]*a[i]; |
| |
p = Length(b); q = Length(b[0]); |
| |
for (j=0; j<p; j++) { |
| |
for (k=0; k<q; k++) { |
| |
if (!IsZero(b[j,k])) { |
| |
Print("Is is not complex at "); |
| |
Println([i,j,k]); |
| |
return(false); |
| |
} |
| |
} |
| |
} |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|
| |
def IsExact_h(c,v) { |
| |
local a; |
| |
v = ToString_array(v); |
| |
a = [c,v]; |
| |
sm1(a," isExact_h /FunctionValue set "); |
| |
} |
| |
HelpAdd(["IsExact_h", |
| |
["IsExact_h(complex,var): bool", |
| |
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
| |
"cf. ReParse" |
| |
]]); |
| |
|
| |
def ReParse(a) { |
| |
local c; |
| |
if (IsArray(a)) { |
| |
c = Map(a,"ReParse"); |
| |
}else{ |
| |
sm1(a," toString . /c set"); |
| |
} |
| |
return(c); |
| |
} |
| |
HelpAdd(["ReParse", |
| |
["Reparse(obj): obj", |
| |
"It parses the given object in the current ring.", |
| |
"Outputs from SlaScala, Sschreyer may cause a trouble in other functions,", |
| |
"because it uses the Schreyer order.", |
| |
"In this case, ReParse the outputs from these functions.", |
| |
"cf. IsExaxt_h" |
| |
]]); |
| |
|
| |
def ScheckIfSchreyer(s) { |
| |
local ss; |
| |
sm1(" (report) (grade) switch_function /ss set "); |
| |
if (ss != "module1v") { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("grade is not module1v"); |
| |
} |
| |
/* |
| |
sm1(" (report) (mmLarger) switch_function /ss set "); |
| |
if (ss != "tower") { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("mmLarger is not tower"); |
| |
} |
| |
*/ |
| |
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
| |
if (ss != 1) { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("Schreyer order is not set."); |
| |
} |
| |
/* More check will be necessary. */ |
| |
return(true); |
| |
} |
| |
|