version 1.5, 2000/05/05 08:13:49 |
version 1.6, 2000/05/06 07:58:37 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.4 2000/05/04 11:05:20 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.5 2000/05/05 08:13:49 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
make a symbolic link by the command |
make a symbolic link by the command |
ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
*/ |
*/ |
|
#define OFFSET 0 |
|
#define TOTAL_STRATEGY |
|
/* #define OFFSET 20*/ |
/* Test sequences. |
/* Test sequences. |
Use load["minimal.k"];; |
Use load["minimal.k"];; |
|
|
Line 336 def test_SinitOfArray() { |
|
Line 339 def test_SinitOfArray() { |
|
|
|
/* f is assumed to be a monomial with toes. */ |
/* f is assumed to be a monomial with toes. */ |
def Sdegree(f,tower,level) { |
def Sdegree(f,tower,level) { |
local i; |
local i,ww, wd; |
|
/* extern WeightOfSweyl; */ |
|
ww = WeightOfSweyl; |
f = Init(f); |
f = Init(f); |
if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
i = Degree(f,es); |
i = Degree(f,es); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
#ifdef TOTAL_STRATEGY |
|
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
|
#endif |
|
/* Strategy must be compatible with ordering. */ |
|
/* Weight vector must be non-negative, too. */ |
|
/* See Sdegree, SgenerateTable, reductionTable. */ |
|
wd = Sord_w(f,ww); |
|
return(wd+Sdegree(tower[level-2,i],tower,level-1)); |
|
|
} |
} |
|
|
def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
Line 351 def SgenerateTable(tower) { |
|
Line 364 def SgenerateTable(tower) { |
|
n = Length(tower[i]); |
n = Length(tower[i]); |
ans_at_each_floor=NewArray(n); |
ans_at_each_floor=NewArray(n); |
for (j=0; j<n; j++) { |
for (j=0; j<n; j++) { |
ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1); |
ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1) |
|
+ OFFSET; |
/* Println([i,j,ans_at_each_floor[j]]); */ |
/* Println([i,j,ans_at_each_floor[j]]); */ |
} |
} |
ans[i] = ans_at_each_floor; |
ans[i] = ans_at_each_floor; |
Line 427 def SlaScala(g) { |
|
Line 441 def SlaScala(g) { |
|
reductionTable_tmp; |
reductionTable_tmp; |
/* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g); |
redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
tower = rf[1]; |
tower = rf[1]; |
Line 1024 def Sannfs(f,v) { |
|
Line 1038 def Sannfs(f,v) { |
|
def Sannfs2(f) { |
def Sannfs2(f) { |
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
|
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
/* |
/* |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
pp = Map(p,"Spoly"); |
|
return(Sminimal_v(pp)); |
|
/* return(Sminimal(pp)); */ |
|
} |
|
|
|
/* Do not forget to turn on TOTAL_STRATEGY */ |
|
def Sannfs2_laScala(f) { |
|
local p,pp; |
|
p = Sannfs(f,"x,y"); |
|
/* Do not make laplace transform. |
|
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
p = [p]; |
|
*/ |
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
pp = Map(p[0],"Spoly"); |
pp = Map(p[0],"Spoly"); |
return(Sminimal(pp)); |
return(Sminimal(pp)); |
} |
} |
Line 1035 def Sannfs2(f) { |
|
Line 1065 def Sannfs2(f) { |
|
def Sannfs3(f) { |
def Sannfs3(f) { |
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
pp = Map(p[0],"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal(pp)); |
return(Sminimal_v(pp)); |
} |
} |
|
|
/* |
/* |
Line 1050 def Sannfs3(f) { |
|
Line 1081 def Sannfs3(f) { |
|
|
|
|
|
|
|
/* The below is under construction. */ |
/* The below does not use LaScala-Stillman's algorithm. */ |
def Sschreyer(g) { |
def Sschreyer(g) { |
local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
redundantTable_ordinary, redundant_seq_ordinary, |
redundantTable_ordinary, redundant_seq_ordinary, |
reductionTable_tmp,c2,ii,nn; |
reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase; |
/* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Line 1121 def Sschreyer(g) { |
|
Line 1152 def Sschreyer(g) { |
|
/* i must be equal to f[2], I think. Double check. */ |
/* i must be equal to f[2], I think. Double check. */ |
|
|
/* Correction Of Constant */ |
/* Correction Of Constant */ |
c2 = f[6]; |
c2 = -f[6]; /* or f[6]? Double check. */ |
nn = Length(bases); |
nn = Length(bases); |
for (ii=0; ii<nn;ii++) { |
for (ii=0; ii<nn;ii++) { |
if (ii != place) { |
if ((ii != place) && (! IsNull(bases[ii]))) { |
bases[ii] = bases[ii]*c2; |
bases[ii] = bases[ii]*c2; |
} |
} |
} |
} |
|
|
freeRes[level] = bases; |
freeRes[level] = bases; |
/* bases = freeRes[level-1]; |
|
bases[place] = f[0]; |
/* Update the freeRes[level-1] */ |
freeRes[level-1] = bases; It is already set. */ |
bases = freeRes[level-1]; |
|
bases[place] = f[0]; |
|
freeRes[level-1] = bases; |
|
|
reducer[level-1,place] = f[1]; |
reducer[level-1,place] = f[1]; |
}else{ |
}else{ |
/* redundantTable[level,i] = 0; */ |
/* redundantTable[level,i] = 0; */ |
Line 1143 def Sschreyer(g) { |
|
Line 1177 def Sschreyer(g) { |
|
} /* end of level >= 1 */ |
} /* end of level >= 1 */ |
} |
} |
} /* i loop */ |
} /* i loop */ |
|
|
|
/* Triangulate reducer */ |
|
if (level >= 1) { |
|
Println(" "); |
|
Print("Triangulating reducer at level "); Println(level-1); |
|
reducerBase = reducer[level-1]; |
|
Print("reducerBase="); Println(reducerBase); |
|
m = Length(reducerBase); |
|
for (ii=m-1; ii>=0; ii--) { |
|
if (!IsNull(reducerBase[ii])) { |
|
for (jj=ii-1; jj>=0; jj--) { |
|
if (!IsNull(reducerBase[jj])) { |
|
if (!IsZero(reducerBase[jj,ii])) { |
|
reducerBase[jj] = reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
Println("New reducer"); |
|
sm1_pmat(reducerBase); |
|
reducer[level-1] = reducerBase; |
|
} |
|
|
} /* level loop */ |
} /* level loop */ |
n = Length(freeRes); |
n = Length(freeRes); |
freeResV = SnewArrayOfFormat(freeRes); |
freeResV = SnewArrayOfFormat(freeRes); |
Line 1151 def Sschreyer(g) { |
|
Line 1209 def Sschreyer(g) { |
|
bases = Sbases_to_vec(bases,bettiTable[i]); |
bases = Sbases_to_vec(bases,bettiTable[i]); |
freeResV[i] = bases; |
freeResV[i] = bases; |
} |
} |
|
|
|
/* Mark the non-redundant elements. */ |
|
for (i=0; i<n; i++) { |
|
m = Length(redundantTable[i]); |
|
for (jj=0; jj<m; jj++) { |
|
if (IsNull(redundantTable[i,jj])) { |
|
redundantTable[i,jj] = 0; |
|
} |
|
} |
|
} |
|
|
|
|
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
} |
} |
|
|
Line 1158 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1228 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
local i, j, myindex, p, bases, tower2, gi, gj, |
local i, j, myindex, p, bases, tower2, gi, gj, |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
vdeg,vdeg_reduced,n,c2; |
vdeg,vdeg_reduced,n,c2; |
Println("SpairAndReduction2:"); |
Println("SpairAndReduction2 : -------------------------"); |
|
|
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
p = skel[level,ii]; |
p = skel[level,ii]; |
Line 1193 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1263 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
tmp = Sreduction(si*gi+sj*gj, bases); |
tmp = Sreduction(si*gi+sj*gj, bases); |
|
|
Print("result is "); Println(tmp); |
Print("result is "); Println(tmp); |
|
if (!IsZero(tmp[0])) { |
|
Print("Error: base = "); |
|
Println(Map(bases,"Stoes_vec")); |
|
Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring."); |
|
} |
t_syz = tmp[2]; |
t_syz = tmp[2]; |
si = si*tmp[1]+t_syz[i]; |
si = si*tmp[1]+t_syz[i]; |
sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
Line 1203 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1278 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
/* tmp[0] must be zero */ |
/* tmp[0] must be zero */ |
n = Length(t_syz); |
n = Length(t_syz); |
for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
if (IsConstant(t_syz[i])) { |
if (IsConstant(t_syz[i])){ |
|
if (!IsZero(t_syz[i])) { |
if (IsNull(redundantTable[level-1,i])) { |
if (IsNull(redundantTable[level-1,i])) { |
/* i must equal to pos2 below. */ |
/* i must equal to pos2 below. */ |
c2 = -t_syz[i]; |
c2 = -t_syz[i]; |
tmp[0] = freeRes[level-1,i]; |
tmp[0] = c2*Stoes_vec(freeRes[level-1,i]); |
t_syz[i] = 0; |
t_syz[i] = 0; |
|
/* tmp[0] = t_syz . g */ |
/* break; does not work. Use */ |
/* break; does not work. Use */ |
i = n; |
i = n; |
} |
} |
|
} |
} |
} |
} |
} |
|
|
Line 1228 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1306 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
/* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
/* pos2 is the place to put a new GB at level-1. */ |
/* pos2 is the place to put a new GB at level-1. */ |
Println(ans); |
Println(ans); |
|
Println(" "); |
return(ans); |
return(ans); |
} |
} |
|
|
|
def Sminimal_v(g) { |
|
local r, freeRes, redundantTable, reducer, maxLevel, |
|
minRes, seq, maxSeq, level, betti, q, bases, dr, |
|
betti_levelplus, newbases, i, j,qq; |
|
r = Sschreyer(g); |
|
sm1_pmat(r); |
|
Debug_Sminimal_v = r; |
|
Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v"); |
|
/* Should I turn off the tower?? */ |
|
freeRes = r[0]; |
|
redundantTable = r[1]; |
|
reducer = r[2]; |
|
minRes = SnewArrayOfFormat(freeRes); |
|
seq = 0; |
|
maxSeq = SgetMaxSeq(redundantTable); |
|
maxLevel = Length(freeRes); |
|
for (level = 0; level < maxLevel; level++) { |
|
minRes[level] = freeRes[level]; |
|
} |
|
for (level = 0; level < maxLevel; level++) { |
|
betti = Length(freeRes[level]); |
|
for (q = betti-1; q>=0; q--) { |
|
if (redundantTable[level,q] > 0) { |
|
Print("[seq,level,q]="); Println([seq,level,q]); |
|
if (level < maxLevel-1) { |
|
bases = freeRes[level+1]; |
|
dr = reducer[level,q]; |
|
dr[q] = -1; |
|
newbases = SnewArrayOfFormat(bases); |
|
betti_levelplus = Length(bases); |
|
/* |
|
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
|
*/ |
|
for (i=0; i<betti_levelplus; i++) { |
|
newbases[i] = bases[i] + bases[i,q]*dr; |
|
} |
|
Println(["level, q =", level,q]); |
|
Println("bases="); sm1_pmat(bases); |
|
Println("dr="); sm1_pmat(dr); |
|
Println("newbases="); sm1_pmat(newbases); |
|
minRes[level+1] = newbases; |
|
freeRes = minRes; |
|
#ifdef DEBUG |
|
/* Do it later. |
|
for (qq=0; qq<betti; qq++) { |
|
for (i=0; i<betti_levelplus; i++) { |
|
if (!IsZero(newbases[i,qq])) { |
|
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
|
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
|
Error("Stop in Sminimal for debugging."); |
|
} |
|
} |
|
} |
|
*/ |
|
#endif |
|
} |
|
} |
|
} |
|
} |
|
return([Stetris(minRes,redundantTable), |
|
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
|
/* r[4] is the redundantTable_ordinary */ |
|
/* r[0] is the freeResolution */ |
|
} |
|
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |