| version 1.4, 2000/05/04 11:05:20 |
version 1.36, 2007/07/03 22:28:11 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.3 2000/05/04 06:55:28 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.35 2007/07/03 22:05:46 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
Sordinary = false; |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
| make a symbolic link by the command |
make a symbolic link by the command |
| ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
| */ |
*/ |
| |
#define OFFSET 0 |
| |
/* #define OFFSET 20*/ |
| |
Sverbose = false; /* Be extreamly verbose */ |
| |
Sverbose2 = true; /* Don't be quiet and show minimal information */ |
| |
def Sprintln(s) { |
| |
if (Sverbose) Println(s); |
| |
} |
| |
def Sprint(s) { |
| |
if (Sverbose) Print(s); |
| |
} |
| |
def Sprintln2(s) { |
| |
if (Sverbose2) Println(s); |
| |
} |
| |
def Sprint2(s) { |
| |
if (Sverbose2) Print(s); |
| |
sm1(" [(flush)] extension "); |
| |
} |
| |
|
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| |
|
|
|
| |
|
| */ |
*/ |
| |
|
| |
/* We cannot use load command in the if statement. */ |
| |
load("lib/minimal/cohom.k"); |
| |
Load_sm1(["k0-tower.sm1","lib/minimal/k0-tower.sm1"],"k0-tower.sm1.loaded"); |
| |
Load_sm1(["new.sm1","lib/minimal/new.sm1"],"new.sm1.loaded"); |
| |
sm1(" oxNoX "); |
| |
|
| load("cohom.k"); |
|
| def load_tower() { |
|
| if (Boundp("k0-tower.sm1.loaded")) { |
|
| }else{ |
|
| sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
|
| sm1(" /k0-tower.sm1.loaded 1 def "); |
|
| } |
|
| } |
|
| load_tower(); |
|
| SonAutoReduce = true; |
SonAutoReduce = true; |
| def Factor(f) { |
def Factor(f) { |
| sm1(f, " fctr /FunctionValue set"); |
sm1(f, " fctr /FunctionValue set"); |
|
|
| def Sgroebner(f) { |
def Sgroebner(f) { |
| sm1(" [f] groebner /FunctionValue set"); |
sm1(" [f] groebner /FunctionValue set"); |
| } |
} |
| |
|
| |
def Sinvolutive(f,w) { |
| |
local g,m; |
| |
if (IsArray(f[0])) { |
| |
m = NewArray(Length(f[0])); |
| |
}else{ |
| |
m = [0]; |
| |
} |
| |
g = Sgroebner(f); |
| |
/* This is a temporary code. */ |
| |
sm1(" g 0 get { w m init_w<m>} map /FunctionValue set "); |
| |
} |
| |
|
| |
|
| |
|
| |
def Error(s) { |
| |
sm1(" s error "); |
| |
} |
| |
|
| |
def IsNull(s) { |
| |
if (Stag(s) == 0) return(true); |
| |
else return(false); |
| |
} |
| |
|
| |
def MonomialPart(f) { |
| |
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
| |
} |
| |
|
| |
def Warning(s) { |
| |
Print("Warning: "); |
| |
Println(s); |
| |
} |
| |
def RingOf(f) { |
| |
local r; |
| |
if (IsPolynomial(f)) { |
| |
if (f != Poly("0")) { |
| |
sm1(f," (ring) dc /r set "); |
| |
}else{ |
| |
sm1(" [(CurrentRingp)] system_variable /r set "); |
| |
} |
| |
}else{ |
| |
Warning("RingOf(f): the argument f must be a polynomial. Return the current ring."); |
| |
sm1(" [(CurrentRingp)] system_variable /r set "); |
| |
} |
| |
return(r); |
| |
} |
| |
|
| |
def Ord_w_m(f,w,m) { |
| |
sm1(" f w m ord_w<m> { (universalNumber) dc } map /FunctionValue set "); |
| |
} |
| |
HelpAdd(["Ord_w_m", |
| |
["Ord_w_m(f,w,m) returns the order of f with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"When f is zero, it returns -intInfinity = -999999999.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" Ord_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
| |
|
| |
def Init_w_m(f,w,m) { |
| |
sm1(" f w m init_w<m> /FunctionValue set "); |
| |
} |
| |
HelpAdd(["Init_w_m", |
| |
["Init_w_m(f,w,m) returns the initial of f with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" Init_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
| |
|
| |
def Max(v) { |
| |
local i,t,n; |
| |
n = Length(v); |
| |
if (n == 0) return(null); |
| |
t = v[0]; |
| |
for (i=0; i<n; i++) { |
| |
if (v[i] > t) { t = v[i];} |
| |
} |
| |
return(t); |
| |
} |
| |
HelpAdd(["Max", |
| |
["Max(v) returns the maximal element in v."]]); |
| |
|
| |
def Kernel(f,v) { |
| |
local ans; |
| |
/* v : string or ring */ |
| |
if (Length(Arglist) < 2) { |
| |
sm1(" [f] syz /ans set "); |
| |
}else{ |
| |
sm1(" [f v] syz /ans set "); |
| |
} |
| |
return(ans); |
| |
} |
| |
def Syz(f) { |
| |
sm1(" [f] syz /FunctionValue set "); |
| |
} |
| |
HelpAdd(["Kernel", |
| |
["Kernel(f) returns the syzygy of f.", |
| |
"Return value [b, c]: b is a set of generators of the syzygies of f", |
| |
" : c=[gb, backward transformation, syzygy without", |
| |
" dehomogenization", |
| |
"Example: Weyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" s=Kernel([x*Dx+1,Dx^2+x^5]); s[0]:"]]); |
| |
/* cf. sm1_syz in cohom.k */ |
| |
def Gb(f) { |
| |
sm1(" [f] gb /FunctionValue set "); |
| |
} |
| |
HelpAdd(["Gb", |
| |
["Gb(f) returns the Groebner basis of f.", |
| |
"cf. Kernel, Weyl."]]); |
| |
|
| |
|
| |
/* End of standard functions that should be moved to standard libraries. */ |
| def test0() { |
def test0() { |
| local f; |
local f; |
| Sweyl("x,y,z"); |
Sweyl("x,y,z"); |
|
|
| } |
} |
| |
|
| |
|
| |
|
| def Sweyl(v,w) { |
def Sweyl(v,w) { |
| /* extern WeightOfSweyl ; */ |
/* extern WeightOfSweyl ; */ |
| local ww,i,n; |
local ww,i,n; |
| Line 124 def StoTower() { |
|
| Line 246 def StoTower() { |
|
| } |
} |
| |
|
| def SsetTower(tower) { |
def SsetTower(tower) { |
| sm1(" [(AvoidTheSameRing)] pushEnv |
sm1(" [(AvoidTheSameRing)] pushEnv \ |
| [ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable \ |
| [(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable \ |
| ] pop popEnv "); |
] pop popEnv "); |
| |
/* sm1("(hoge) message show_ring "); */ |
| } |
} |
| |
|
| def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
| local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
| gbasis; |
gbasis, nohomog,i,n; |
| |
/* extern Sordinary */ |
| |
nohomog = false; |
| |
count = -1; Sordinary = false; /* default value for options. */ |
| if (Length(Arglist) >= 2) { |
if (Length(Arglist) >= 2) { |
| if (IsInteger(opt)) count = opt; |
if (IsArray(opt)) { |
| }else{ |
n = Length(opt); |
| count = -1; |
for (i=0; i<n; i++) { |
| |
if (IsInteger(opt[i])) { |
| |
count = opt[i]; |
| |
} |
| |
if (IsString(opt[i])) { |
| |
if (opt[i] == "homogenized") { |
| |
nohomog = true; |
| |
}else if (opt[i] == "Sordinary") { |
| |
Sordinary = true; |
| |
}else{ |
| |
Println("Warning: unknown option"); |
| |
Println(opt); |
| |
} |
| |
} |
| |
} |
| |
} else if (IsNull(opt)){ |
| |
} else { |
| |
Println("Warning: option should be given by an array."); |
| |
Println(opt); |
| |
Println("--------------------------------------------"); |
| |
} |
| } |
} |
| |
|
| sm1(" setupEnvForResolution "); |
sm1(" setupEnvForResolution "); |
| Line 148 def SresolutionFrameWithTower(g,opt) { |
|
| Line 294 def SresolutionFrameWithTower(g,opt) { |
|
| */ |
*/ |
| |
|
| sm1(" (mmLarger) (matrix) switch_function "); |
sm1(" (mmLarger) (matrix) switch_function "); |
| g = Map(g,"Shomogenize"); |
if (! nohomog) { |
| |
Println("Automatic homogenization."); |
| |
g = Map(g,"Shomogenize"); |
| |
}else{ |
| |
Println("No automatic homogenization."); |
| |
} |
| if (SonAutoReduce) { |
if (SonAutoReduce) { |
| sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
| sm1("[ (AutoReduce) 1 ] system_variable "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
| Line 165 def SresolutionFrameWithTower(g,opt) { |
|
| Line 316 def SresolutionFrameWithTower(g,opt) { |
|
| /* -sugar is fine? */ |
/* -sugar is fine? */ |
| sm1(" setupEnvForResolution "); |
sm1(" setupEnvForResolution "); |
| |
|
| Println(g); |
Sprintln(g); |
| startingGB = g; |
startingGB = g; |
| /* ans = [ SzeroMap(g) ]; It has not been implemented. see resol1.withZeroMap */ |
/* ans = [ SzeroMap(g) ]; It has not been implemented. see resol1.withZeroMap */ |
| ans = [ ]; |
ans = [ ]; |
| Line 188 def SresolutionFrameWithTower(g,opt) { |
|
| Line 339 def SresolutionFrameWithTower(g,opt) { |
|
| } |
} |
| HelpAdd(["SresolutionFrameWithTower", |
HelpAdd(["SresolutionFrameWithTower", |
| ["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
| |
"option: \"homogenized\" (no automatic homogenization) ", |
| "Example: Sweyl(\"x,y\");", |
"Example: Sweyl(\"x,y\");", |
| " a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
| |
|
| def SresolutionFrame(f,opt) { |
def SresolutionFrame(f,opt) { |
| local ans; |
local ans; |
| ans = SresolutionFrameWithTower(f); |
ans = SresolutionFrameWithTower(f,opt); |
| return(ans[0]); |
return(ans[0]); |
| } |
} |
| /* ---------------------------- */ |
/* ---------------------------- */ |
| Line 206 def NewPolynomialVector(size) { |
|
| Line 358 def NewPolynomialVector(size) { |
|
| } |
} |
| |
|
| def SturnOffHomogenization() { |
def SturnOffHomogenization() { |
| sm1(" |
sm1(" \ |
| [(Homogenize)] system_variable 1 eq |
[(Homogenize)] system_variable 1 eq \ |
| { (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message |
{ Sverbose { \ |
| [(Homogenize) 0] system_variable |
(Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message } { } ifelse \ |
| [(ReduceLowerTerms) 0] system_variable |
[(Homogenize) 0] system_variable \ |
| } { } ifelse |
[(ReduceLowerTerms) 0] system_variable \ |
| |
} { } ifelse \ |
| "); |
"); |
| } |
} |
| |
/* NOTE!!! Be careful these changes of global environmental variables. |
| |
We should make a standard set of values and restore these values |
| |
after computation and interruption. August 15, 2000. |
| |
*/ |
| def SturnOnHomogenization() { |
def SturnOnHomogenization() { |
| sm1(" |
sm1(" \ |
| [(Homogenize)] system_variable 0 eq |
[(Homogenize)] system_variable 0 eq \ |
| { (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message |
{ Sverbose { \ |
| [(Homogenize) 1] system_variable |
(Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message } { } ifelse \ |
| [(ReduceLowerTerms) 1] system_variable |
[(Homogenize) 1] system_variable \ |
| } { } ifelse |
[(ReduceLowerTerms) 1] system_variable \ |
| |
} { } ifelse \ |
| "); |
"); |
| } |
} |
| |
|
| Line 265 def Sres0FrameWithSkelton(g) { |
|
| Line 423 def Sres0FrameWithSkelton(g) { |
|
| si = pair[1,0]; |
si = pair[1,0]; |
| sj = pair[1,1]; |
sj = pair[1,1]; |
| /* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */ |
/* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */ |
| Print("."); |
Sprint("."); |
| |
|
| t_syz = NewPolynomialVector(gLength); |
t_syz = NewPolynomialVector(gLength); |
| t_syz[i] = si; |
t_syz[i] = si; |
| Line 273 def Sres0FrameWithSkelton(g) { |
|
| Line 431 def Sres0FrameWithSkelton(g) { |
|
| syzAll[k] = t_syz; |
syzAll[k] = t_syz; |
| } |
} |
| t_syz = syzAll; |
t_syz = syzAll; |
| Print("Done. betti="); Println(betti); |
Sprint("Done. betti="); Sprintln(betti); |
| /* Println(g); g is in a format such as |
/* Println(g); g is in a format such as |
| [e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
[e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
| [e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
[e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
| Line 287 def Sres0FrameWithSkelton(g) { |
|
| Line 445 def Sres0FrameWithSkelton(g) { |
|
| |
|
| |
|
| def StotalDegree(f) { |
def StotalDegree(f) { |
| sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
| |
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
| |
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
| |
return(d0); |
| } |
} |
| |
|
| |
HelpAdd(["Sord_w", |
| |
["Sord_w(f,w) returns the w-order of f", |
| |
"Example: Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]):"]]); |
| /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
| def Sord_w(f,w) { |
def Sord_w(f,w) { |
| local neww,i,n; |
local neww,i,n; |
| Line 323 def test_SinitOfArray() { |
|
| Line 487 def test_SinitOfArray() { |
|
| f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2, |
f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2, |
| -y^2*z^2 + x*z^3 + y*z^3, -z^4]; |
-y^2*z^2 + x*z^3 + y*z^3, -z^4]; |
| p=SresolutionFrameWithTower(f); |
p=SresolutionFrameWithTower(f); |
| sm1_pmat(p); |
if (Sverbose) { |
| sm1_pmat(SgenerateTable(p[1])); |
sm1_pmat(p); |
| |
sm1_pmat(SgenerateTable(p[1])); |
| |
} |
| return(p); |
return(p); |
| frame = p[0]; |
frame = p[0]; |
| sm1_pmat(p[1]); |
sm1_pmat(p[1]); |
| Line 336 def test_SinitOfArray() { |
|
| Line 502 def test_SinitOfArray() { |
|
| |
|
| /* f is assumed to be a monomial with toes. */ |
/* f is assumed to be a monomial with toes. */ |
| def Sdegree(f,tower,level) { |
def Sdegree(f,tower,level) { |
| local i; |
local i,ww, wd; |
| |
/* extern WeightOfSweyl; */ |
| |
ww = WeightOfSweyl; |
| |
f = Init(f); |
| if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
| i = Degree(f,es); |
i = Degree(f,es); |
| return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
| |
|
| } |
} |
| |
|
| def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
| local height, n,i,j, ans, ans_at_each_floor; |
local height, n,i,j, ans, ans_at_each_floor; |
| |
|
| |
/* |
| |
Sprint("SgenerateTable: tower=");Sprintln(tower); |
| |
sm1(" print_switch_status "); */ |
| height = Length(tower); |
height = Length(tower); |
| ans = NewArray(height); |
ans = NewArray(height); |
| for (i=0; i<height; i++) { |
for (i=0; i<height; i++) { |
| n = Length(tower[i]); |
n = Length(tower[i]); |
| ans_at_each_floor=NewArray(n); |
ans_at_each_floor=NewArray(n); |
| for (j=0; j<n; j++) { |
for (j=0; j<n; j++) { |
| ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1); |
ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1) |
| |
+ OFFSET; |
| /* Println([i,j,ans_at_each_floor[j]]); */ |
/* Println([i,j,ans_at_each_floor[j]]); */ |
| } |
} |
| ans[i] = ans_at_each_floor; |
ans[i] = ans_at_each_floor; |
| Line 418 def SmaxOfStrategy(a) { |
|
| Line 593 def SmaxOfStrategy(a) { |
|
| } |
} |
| |
|
| |
|
| def SlaScala(g) { |
def SlaScala(g,opt) { |
| local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
| strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
| freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
| Line 426 def SlaScala(g) { |
|
| Line 601 def SlaScala(g) { |
|
| reductionTable_tmp; |
reductionTable_tmp; |
| /* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
| ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
| Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Sprint("WeightOfSweyl="); Sprintln(WeightOfSweyl); |
| rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g,opt); |
| |
Sprint("rf="); if (Sverbose) {sm1_pmat(rf);} |
| redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| tower = rf[1]; |
tower = rf[1]; |
| |
|
| |
Sprintln("Generating reduction table which gives an order of reduction."); |
| |
Sprint("WeghtOfSweyl="); Sprintln(WeightOfSweyl); |
| |
Sprint2("tower="); Sprintln2(tower); |
| reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
| |
Sprint2("reductionTable="); |
| |
if (Sverbose || Sverbose2) {sm1_pmat(reductionTable);} |
| |
|
| skel = rf[2]; |
skel = rf[2]; |
| redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
| redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
| Line 448 def SlaScala(g) { |
|
| Line 631 def SlaScala(g) { |
|
| while (SthereIs(reductionTable_tmp,strategy)) { |
while (SthereIs(reductionTable_tmp,strategy)) { |
| i = SnextI(reductionTable_tmp,strategy,redundantTable, |
i = SnextI(reductionTable_tmp,strategy,redundantTable, |
| skel,level,freeRes); |
skel,level,freeRes); |
| Println([level,i]); |
Sprintln([level,i]); |
| reductionTable_tmp[i] = -200000; |
reductionTable_tmp[i] = -200000; |
| if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
| Print("Processing "); Print([level,i]); |
Sprint("Processing [level,i]= "); Sprint([level,i]); |
| Print(" Strategy = "); Println(strategy); |
Sprint(" Strategy = "); Sprintln(strategy); |
| |
Sprint2(strategy); |
| if (level == 0) { |
if (level == 0) { |
| if (IsNull(redundantTable[level,i])) { |
if (IsNull(redundantTable[level,i])) { |
| bases = freeRes[level]; |
bases = freeRes[level]; |
| Line 472 def SlaScala(g) { |
|
| Line 656 def SlaScala(g) { |
|
| place = f[3]; |
place = f[3]; |
| /* (level-1, place) is the place for f[0], |
/* (level-1, place) is the place for f[0], |
| which is a newly obtained GB. */ |
which is a newly obtained GB. */ |
| #ifdef ORDINARY |
if (Sordinary) { |
| redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
| redundant_seq++; |
redundant_seq++; |
| #else |
}else{ |
| if (f[4] > f[5]) { |
if (f[4] > f[5]) { |
| /* Zero in the gr-module */ |
/* Zero in the gr-module */ |
| Print("v-degree of [org,remainder] = "); |
Sprint("v-degree of [org,remainder] = "); |
| Println([f[4],f[5]]); |
Sprintln([f[4],f[5]]); |
| Print("[level,i] = "); Println([level,i]); |
Sprint("[level,i] = "); Sprintln([level,i]); |
| redundantTable[level-1,place] = 0; |
redundantTable[level-1,place] = 0; |
| }else{ |
}else{ |
| redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
| redundant_seq++; |
redundant_seq++; |
| } |
} |
| #endif |
} |
| redundantTable_ordinary[level-1,place] |
redundantTable_ordinary[level-1,place] |
| =redundant_seq_ordinary; |
=redundant_seq_ordinary; |
| redundant_seq_ordinary++; |
redundant_seq_ordinary++; |
| Line 512 def SlaScala(g) { |
|
| Line 696 def SlaScala(g) { |
|
| } |
} |
| strategy++; |
strategy++; |
| } |
} |
| |
Sprintln2(" "); |
| n = Length(freeRes); |
n = Length(freeRes); |
| freeResV = SnewArrayOfFormat(freeRes); |
freeResV = SnewArrayOfFormat(freeRes); |
| for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
| Line 519 def SlaScala(g) { |
|
| Line 704 def SlaScala(g) { |
|
| bases = Sbases_to_vec(bases,bettiTable[i]); |
bases = Sbases_to_vec(bases,bettiTable[i]); |
| freeResV[i] = bases; |
freeResV[i] = bases; |
| } |
} |
| return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]); |
| } |
} |
| |
|
| def SthereIs(reductionTable_tmp,strategy) { |
def SthereIs(reductionTable_tmp,strategy) { |
| Line 559 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
| Line 744 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
| } |
} |
| } |
} |
| } |
} |
| Println(reductionTable_tmp); |
Sprint("reductionTable_tmp="); |
| |
Sprintln(reductionTable_tmp); |
| |
Sprintln("See also reductionTable, strategy, level,i"); |
| Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
| } |
} |
| |
|
| Line 593 def SwhereInGB(f,tower) { |
|
| Line 780 def SwhereInGB(f,tower) { |
|
| q = MonomialPart(f); |
q = MonomialPart(f); |
| if (p == q) return(i); |
if (p == q) return(i); |
| } |
} |
| Println([f,tower]); |
Sprintln([f,tower]); |
| Error("whereInGB : [f,myset]: f could not be found in the myset."); |
Error("whereInGB : [f,myset]: f could not be found in the myset."); |
| } |
} |
| def SunitOfFormat(pos,forms) { |
def SunitOfFormat(pos,forms) { |
| Line 610 def SunitOfFormat(pos,forms) { |
|
| Line 797 def SunitOfFormat(pos,forms) { |
|
| return(ans); |
return(ans); |
| } |
} |
| |
|
| def Error(s) { |
|
| sm1(" s error "); |
|
| } |
|
| |
|
| def IsNull(s) { |
|
| if (Stag(s) == 0) return(true); |
|
| else return(false); |
|
| } |
|
| |
|
| def StowerOf(tower,level) { |
def StowerOf(tower,level) { |
| local ans,i; |
local ans,i; |
| ans = [ ]; |
ans = [ ]; |
| Line 639 def Sspolynomial(f,g) { |
|
| Line 818 def Sspolynomial(f,g) { |
|
| sm1("f g spol /FunctionValue set"); |
sm1("f g spol /FunctionValue set"); |
| } |
} |
| |
|
| def MonomialPart(f) { |
|
| sm1(" [(lmonom) f] gbext /FunctionValue set "); |
|
| } |
|
| |
|
| |
/* WARNING: |
| |
When you use SwhereInTower, you have to change gbList |
| |
as below. Ofcourse, you should restrore the gbList |
| |
SsetTower(StowerOf(tower,level)); |
| |
pos = SwhereInTower(syzHead,tower[level]); |
| |
*/ |
| def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
| local i,n,p,q; |
local i,n,p,q; |
| if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
| Line 652 def SwhereInTower(f,tower) { |
|
| Line 834 def SwhereInTower(f,tower) { |
|
| q = MonomialPart(f); |
q = MonomialPart(f); |
| if (p == q) return(i); |
if (p == q) return(i); |
| } |
} |
| Println([f,tower]); |
Sprintln([f,tower]); |
| Error("[f,tower]: f could not be found in the tower."); |
Error("[f,tower]: f could not be found in the tower."); |
| } |
} |
| |
|
| Line 664 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 846 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| local i, j, myindex, p, bases, tower2, gi, gj, |
local i, j, myindex, p, bases, tower2, gi, gj, |
| si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
| vdeg,vdeg_reduced; |
vdeg,vdeg_reduced; |
| Println("SpairAndReduction:"); |
Sprintln("SpairAndReduction:"); |
| |
|
| if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
| p = skel[level,ii]; |
p = skel[level,ii]; |
| myindex = p[0]; |
myindex = p[0]; |
| i = myindex[0]; j = myindex[1]; |
i = myindex[0]; j = myindex[1]; |
| bases = freeRes[level-1]; |
bases = freeRes[level-1]; |
| Println(["p and bases ",p,bases]); |
Sprintln(["p and bases ",p,bases]); |
| if (IsNull(bases[i]) || IsNull(bases[j])) { |
if (IsNull(bases[i]) || IsNull(bases[j])) { |
| Println([level,i,j,bases[i],bases[j]]); |
Sprintln([level,i,j,bases[i],bases[j]]); |
| Error("level, i, j : bases[i], bases[j] must not be NULL."); |
Error("level, i, j : bases[i], bases[j] must not be NULL."); |
| } |
} |
| |
|
| tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
| SsetTower(tower2); |
SsetTower(tower2); |
| |
Sprintln(["level=",level]); |
| |
Sprintln(["tower2=",tower2]); |
| /** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
| |
|
| gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
| Line 689 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 873 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| sj = ssp[0,1]; |
sj = ssp[0,1]; |
| syzHead = si*es^i; |
syzHead = si*es^i; |
| /* This will be the head term, I think. But, double check. */ |
/* This will be the head term, I think. But, double check. */ |
| Println([si*es^i,sj*es^j]); |
Sprintln([si*es^i,sj*es^j]); |
| |
|
| Print("[gi, gj] = "); Println([gi,gj]); |
Sprint("[gi, gj] = "); Sprintln([gi,gj]); |
| sm1(" [(Homogenize)] system_variable message "); |
sm1(" [(Homogenize)] system_variable "); |
| Print("Reduce the element "); Println(si*gi+sj*gj); |
Sprint("Reduce the element "); Sprintln(si*gi+sj*gj); |
| Print("by "); Println(bases); |
Sprint("by "); Sprintln(bases); |
| |
|
| tmp = Sreduction(si*gi+sj*gj, bases); |
tmp = Sreduction(si*gi+sj*gj, bases); |
| |
|
| Print("result is "); Println(tmp); |
Sprint("result is "); Sprintln(tmp); |
| |
|
| /* This is essential part for V-minimal resolution. */ |
/* This is essential part for V-minimal resolution. */ |
| /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
| vdeg = SvDegree(si*gi,tower,level-1,ww); |
vdeg = SvDegree(si*gi,tower,level-1,ww); |
| vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
| Print("vdegree of the original = "); Println(vdeg); |
Sprint("vdegree of the original = "); Sprintln(vdeg); |
| Print("vdegree of the remainder = "); Println(vdeg_reduced); |
Sprint("vdegree of the remainder = "); Sprintln(vdeg_reduced); |
| |
|
| t_syz = tmp[2]; |
t_syz = tmp[2]; |
| si = si*tmp[1]+t_syz[i]; |
si = si*tmp[1]+t_syz[i]; |
| sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
| t_syz[i] = si; |
t_syz[i] = si; |
| t_syz[j] = sj; |
t_syz[j] = sj; |
| |
|
| |
SsetTower(StowerOf(tower,level)); |
| pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
| |
|
| |
SsetTower(StowerOf(tower,level-1)); |
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
| /* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
| /* pos2 is the place to put a new GB at level-1. */ |
/* pos2 is the place to put a new GB at level-1. */ |
| Println(ans); |
Sprintln(ans); |
| return(ans); |
return(ans); |
| } |
} |
| |
|
| Line 750 def Sreduction(f,myset) { |
|
| Line 938 def Sreduction(f,myset) { |
|
| return([tmp[0],tmp[1],t_syz]); |
return([tmp[0],tmp[1],t_syz]); |
| } |
} |
| |
|
| def Warning(s) { |
|
| Print("Warning: "); |
|
| Println(s); |
|
| } |
|
| def RingOf(f) { |
|
| local r; |
|
| if (IsPolynomial(f)) { |
|
| if (f != Poly("0")) { |
|
| sm1(f," (ring) dc /r set "); |
|
| }else{ |
|
| sm1(" [(CurrentRingp)] system_variable /r set "); |
|
| } |
|
| }else{ |
|
| Warning("RingOf(f): the argument f must be a polynomial. Return the current ring."); |
|
| sm1(" [(CurrentRingp)] system_variable /r set "); |
|
| } |
|
| return(r); |
|
| } |
|
| |
|
| def Sfrom_es(f,size) { |
def Sfrom_es(f,size) { |
| local c,ans, i, d, myes, myee, j,n,r,ans2; |
local c,ans, i, d, myes, myee, j,n,r,ans2; |
| Line 825 def Sbases_to_vec(bases,size) { |
|
| Line 995 def Sbases_to_vec(bases,size) { |
|
| return(newbases); |
return(newbases); |
| } |
} |
| |
|
| def Sminimal(g) { |
HelpAdd(["Sminimal", |
| |
["It constructs the V-minimal free resolution by LaScala's algorithm", |
| |
"option: \"homogenized\" (no automatic homogenization)", |
| |
" : \"Sordinary\" (no (u,v)-minimal resolution)", |
| |
"Options should be given as an array.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal(v);", |
| |
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" b = ReParse(a[0]); sm1_pmat(b); ", |
| |
" IsExact_h(b,[x,y]):", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution.", |
| |
" ---> D^{m_3} --b[2]--> D^{m_2} --b[1]--> D^{m_1} --b[0]--> D^{m_0} ", |
| |
" Here D^{m_i} are the set of row vectors. " |
| |
]]); |
| |
|
| |
def Sminimal(g,opt) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes,bettiTable, ansSminimal; |
| r = SlaScala(g); |
if (Length(Arglist) < 2) { |
| |
opt = null; |
| |
} |
| |
/* Sordinary is set in SlaScala(g,opt) --> SresolutionFrameWithTower */ |
| |
|
| |
ScheckIfSchreyer("Sminimal:0"); |
| |
r = SlaScala(g,opt); |
| /* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
| |
ScheckIfSchreyer("Sminimal:1"); |
| freeRes = r[0]; |
freeRes = r[0]; |
| redundantTable = r[1]; |
redundantTable = r[1]; |
| reducer = r[2]; |
reducer = r[2]; |
| |
bettiTable = SbettiTable(redundantTable); |
| |
Sprintln2("BettiTable ------"); |
| |
if (Sverbose || Sverbose2) {sm1_pmat(bettiTable);} |
| minRes = SnewArrayOfFormat(freeRes); |
minRes = SnewArrayOfFormat(freeRes); |
| seq = 0; |
seq = 0; |
| maxSeq = SgetMaxSeq(redundantTable); |
maxSeq = SgetMaxSeq(redundantTable); |
| Line 843 def Sminimal(g) { |
|
| Line 1042 def Sminimal(g) { |
|
| } |
} |
| seq=maxSeq+1; |
seq=maxSeq+1; |
| while (seq > 1) { |
while (seq > 1) { |
| seq--; |
seq--; Sprint2(seq); |
| for (level = 0; level < maxLevel; level++) { |
for (level = 0; level < maxLevel; level++) { |
| betti = Length(freeRes[level]); |
betti = Length(freeRes[level]); |
| for (q = 0; q<betti; q++) { |
for (q = 0; q<betti; q++) { |
| if (redundantTable[level,q] == seq) { |
if (redundantTable[level,q] == seq) { |
| Print("[seq,level,q]="); Println([seq,level,q]); |
Sprint("[seq,level,q]="); Sprintln([seq,level,q]); |
| if (level < maxLevel-1) { |
if (level < maxLevel-1) { |
| bases = freeRes[level+1]; |
bases = freeRes[level+1]; |
| dr = reducer[level,q]; |
dr = reducer[level,q]; |
| Line 861 def Sminimal(g) { |
|
| Line 1060 def Sminimal(g) { |
|
| for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
| newbases[i] = bases[i] + bases[i,q]*dr; |
newbases[i] = bases[i] + bases[i,q]*dr; |
| } |
} |
| Println(["level, q =", level,q]); |
Sprintln(["level, q =", level,q]); |
| Println("bases="); sm1_pmat(bases); |
Sprintln("bases="); if (Sverbose) {sm1_pmat(bases); } |
| Println("dr="); sm1_pmat(dr); |
Sprintln("dr="); if (Sverbose) {sm1_pmat(dr);} |
| Println("newbases="); sm1_pmat(newbases); |
Sprintln("newbases="); if (Sverbose) {sm1_pmat(newbases);} |
| minRes[level+1] = newbases; |
minRes[level+1] = newbases; |
| freeRes = minRes; |
freeRes = minRes; |
| #ifdef DEBUG |
#ifdef DEBUG |
| Line 874 def Sminimal(g) { |
|
| Line 1073 def Sminimal(g) { |
|
| for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
| if (!IsZero(newbases[i,qq])) { |
if (!IsZero(newbases[i,qq])) { |
| Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
| Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Sprint("redundantTable ="); sm1_pmat(redundantTable[level]); |
| Error("Stop in Sminimal for debugging."); |
Error("Stop in Sminimal for debugging."); |
| } |
} |
| } |
} |
| Line 886 def Sminimal(g) { |
|
| Line 1085 def Sminimal(g) { |
|
| } |
} |
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
ansSminimal = [SpruneZeroRow(tminRes), tminRes, |
| |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]; |
| |
Sprintln2(" "); |
| |
Println("------------ Note -----------------------------"); |
| |
Println("To get shift vectors, use Reparse and SgetShifts(resmat,w)"); |
| |
Println("To get initial of the complex, use Reparse and Sinit_w(resmat,w)"); |
| |
Println("0: minimal resolution, 3: Schreyer resolution "); |
| |
Println("------------ Resolution Summary --------------"); |
| |
Print("Betti numbers : "); |
| |
Println(Join([Length(ansSminimal[0,0,0])],Map(ansSminimal[0],"Length"))); |
| |
Print("Betti numbers of the Schreyer frame: "); |
| |
Println(Join([Length(ansSminimal[3,0,0])],Map(ansSminimal[3],"Length"))); |
| |
Println("-----------------------------------------------"); |
| |
|
| |
sm1(" restoreEnvAfterResolution "); |
| |
Sordinary = false; |
| |
|
| |
return(ansSminimal); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| |
/* r[5] is the skelton */ |
| } |
} |
| |
|
| |
|
| Line 958 def Stetris(freeRes,redundantTable) { |
|
| Line 1175 def Stetris(freeRes,redundantTable) { |
|
| }else{ |
}else{ |
| newbases = bases; |
newbases = bases; |
| } |
} |
| Println(["level=", level]); |
Sprintln(["level=", level]); |
| sm1_pmat(bases); |
if (Sverbose){ |
| sm1_pmat(newbases); |
sm1_pmat(bases); |
| |
sm1_pmat(newbases); |
| |
} |
| |
|
| minRes[level] = newbases; |
minRes[level] = newbases; |
| } |
} |
| Line 1021 def Sannfs(f,v) { |
|
| Line 1240 def Sannfs(f,v) { |
|
| def Sannfs2(f) { |
def Sannfs2(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| pp = Map(p[0],"Spoly"); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| return(Sminimal(pp)); |
pp = Map(p,"Spoly"); |
| |
return(Sminimal(pp)); |
| } |
} |
| |
|
| |
HelpAdd(["Sannfs2", |
| |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
| |
"See also Sminimal, Sannfs3.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:", |
| |
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:" |
| |
]]); |
| |
/* Some samples. |
| |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| |
a=Sannfs2("x^3-y^2-x"); |
| |
a=Sannfs2("x*y*(x-y)"); |
| |
*/ |
| |
|
| |
|
| def Sannfs3(f) { |
def Sannfs3(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
| |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
| Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| pp = Map(p[0],"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal(pp)); |
return(Sminimal(pp)); |
| } |
} |
| |
|
| /* |
HelpAdd(["Sannfs3", |
| The betti numbers of most examples are 2,1. (0-th and 1-th). |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
| a=Sannfs2("x^3-y^2-x"); : it causes an error. It should be fixed. |
"See also Sminimal, Sannfs2.", |
| a=Sannfs2("x*y*(x-y)"); : it causes an error. It should be fixed. |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]: b[2]*b[1]:"]]); |
| |
|
| */ |
|
| |
|
| |
|
| |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
| |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
| |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
| |
contains 1. |
| |
*/ |
| |
|
| |
def CopyArray(m) { |
| |
local ans,i,n; |
| |
if (IsArray(m)) { |
| |
n = Length(m); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
ans[i] = CopyArray(m[i]); |
| |
} |
| |
return(ans); |
| |
}else{ |
| |
return(m); |
| |
} |
| |
} |
| |
HelpAdd(["CopyArray", |
| |
["It duplicates the argument array recursively.", |
| |
"Example: m=[1,[2,3]];", |
| |
" a=CopyArray(m); a[1] = \"Hello\";", |
| |
" Println(m); Println(a);"]]); |
| |
|
| |
def IsZeroVector(m) { |
| |
local n,i; |
| |
n = Length(m); |
| |
for (i=0; i<n; i++) { |
| |
if (!IsZero(m[i])) { |
| |
return(false); |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|
| |
def SpruneZeroRow(res) { |
| |
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
| |
|
| |
minRes = CopyArray(res); |
| |
n = Length(minRes); |
| |
for (i=0; i<n; i++) { |
| |
base = minRes[i]; |
| |
m = Length(base); |
| |
if (i != n-1) { |
| |
base2 = minRes[i+1]; |
| |
base2 = Transpose(base2); |
| |
} |
| |
newbase = [ ]; |
| |
newbase2 = [ ]; |
| |
for (j=0; j<m; j++) { |
| |
if (!IsZeroVector(base[j])) { |
| |
newbase = Append(newbase,base[j]); |
| |
if (i != n-1) { |
| |
newbase2 = Append(newbase2,base2[j]); |
| |
} |
| |
} |
| |
} |
| |
minRes[i] = newbase; |
| |
if (i != n-1) { |
| |
if (newbase2 == [ ]) { |
| |
minRes[i+1] = [ ]; |
| |
}else{ |
| |
minRes[i+1] = Transpose(newbase2); |
| |
} |
| |
} |
| |
} |
| |
|
| |
newMinRes = [ ]; |
| |
n = Length(minRes); |
| |
i = 0; |
| |
while (i < n ) { |
| |
base = minRes[i]; |
| |
if (base == [ ]) { |
| |
i = n; /* break; */ |
| |
}else{ |
| |
newMinRes = Append(newMinRes,base); |
| |
} |
| |
i++; |
| |
} |
| |
return(newMinRes); |
| |
} |
| |
|
| |
def testAnnfs2(f) { |
| |
local a,i,n; |
| |
a = Sannfs2(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
def testAnnfs3(f) { |
| |
local a,i,n; |
| |
a = Sannfs3(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
|
| |
def ToString_array(p) { |
| |
local ans; |
| |
if (IsArray(p)) { |
| |
ans = Map(p,"ToString_array"); |
| |
}else{ |
| |
ans = ToString(p); |
| |
} |
| |
return(ans); |
| |
} |
| |
|
| |
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
| |
|
| |
def sm1_res_div(I,J,V) { |
| |
I = ToString_array(I); |
| |
J = ToString_array(J); |
| |
V = ToString_array(V); |
| |
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
| |
} |
| |
|
| |
/* It has not yet been working */ |
| |
def sm1_res_kernel_image(m,n,v) { |
| |
m = ToString_array(m); |
| |
n = ToString_array(n); |
| |
v = ToString_array(v); |
| |
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
| |
} |
| |
def Skernel(m,v) { |
| |
m = ToString_array(m); |
| |
v = ToString_array(v); |
| |
sm1(" [ m v ] syz /FunctionValue set "); |
| |
} |
| |
|
| |
|
| |
def sm1_gb(f,v) { |
| |
f =ToString_array(f); |
| |
v = ToString_array(v); |
| |
sm1(" [f v] gb /FunctionValue set "); |
| |
} |
| |
|
| |
|
| |
def SisComplex(a) { |
| |
local n,i,j,k,b,p,q; |
| |
n = Length(a); |
| |
for (i=0; i<n-1; i++) { |
| |
if (Length(a[i+1]) != 0) { |
| |
b = a[i+1]*a[i]; |
| |
p = Length(b); q = Length(b[0]); |
| |
for (j=0; j<p; j++) { |
| |
for (k=0; k<q; k++) { |
| |
if (!IsZero(b[j,k])) { |
| |
Print("Is is not complex at "); |
| |
Println([i,j,k]); |
| |
return(false); |
| |
} |
| |
} |
| |
} |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|
| |
def IsExact_h(c,v) { |
| |
local a; |
| |
v = ToString_array(v); |
| |
a = [c,v]; |
| |
sm1(a," isExact_h /FunctionValue set "); |
| |
} |
| |
HelpAdd(["IsExact_h", |
| |
["IsExact_h(complex,var): bool", |
| |
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
| |
"cf. ReParse" |
| |
]]); |
| |
|
| |
def IsSameIdeal_h(ii,jj,v) { |
| |
local a; |
| |
v = ToString_array(v); |
| |
a = [ii,jj,v]; |
| |
sm1(a," isSameIdeal_h /FunctionValue set "); |
| |
} |
| |
HelpAdd(["IsSameIdeal_h", |
| |
["IsSameIdeal_h(ii,jj,var): bool", |
| |
"It checks the given ideals are the same or not in D<h> (homogenized Weyl algebra)", |
| |
"cf. ReParse" |
| |
]]); |
| |
|
| |
/* |
| |
Output of S* functions may cause a trouble because it uses Schreyer orders. |
| |
In this case, use ReParse(). |
| |
*/ |
| |
|
| |
def ScheckIfSchreyer(s) { |
| |
local ss; |
| |
sm1(" (report) (grade) switch_function /ss set "); |
| |
if (ss != "module1v") { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("grade is not module1v"); |
| |
} |
| |
/* |
| |
sm1(" (report) (mmLarger) switch_function /ss set "); |
| |
if (ss != "tower") { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("mmLarger is not tower"); |
| |
} |
| |
*/ |
| |
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
| |
if (ss != 1) { |
| |
Print("ScheckIfSchreyer: from "); Printl(s); |
| |
Error("Schreyer order is not set."); |
| |
} |
| |
/* More check will be necessary. */ |
| |
return(true); |
| |
} |
| |
|
| |
def SgetShift(mat,w,m) { |
| |
local omat; |
| |
sm1(" mat { w m ord_w<m> {(universalNumber) dc}map } map /omat set"); |
| |
return(Map(omat,"Max")); |
| |
} |
| |
HelpAdd(["SgetShift", |
| |
["SgetShift(mat,w,m) returns the shift vector of mat with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" SgetShift([[x*Dx+1,Dx^2+x^5],[Poly(\"0\"),x],[x,x]],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
| |
|
| |
def SgetShifts(resmat,w) { |
| |
local i,n,ans,m0; |
| |
n = Length(resmat); |
| |
ans = NewArray(n+1); |
| |
m0 = NewArray(Length(resmat[0,0])); |
| |
ans[0] = m0; |
| |
for (i=0; i<n; i++) { |
| |
ans[i+1] = SgetShift(resmat[i],w,m0); |
| |
m0 = ans[i+1]; |
| |
} |
| |
return(ans); |
| |
} |
| |
HelpAdd(["SgetShifts", |
| |
["SgetShifts(resmat,w) returns the shift vectors of the resolution resmat", |
| |
" with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"Zero row is not allowed.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];", |
| |
" Sweyl(\"x,y\",[w]); b = Reparse(b);", |
| |
" SgetShifts(b,w):"]]); |
| |
|
| |
def Sinit_w(resmat,w) { |
| |
local shifts,ans,n,i,m,mat,j; |
| |
shifts = SgetShifts(resmat,w); |
| |
n = Length(resmat); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
m = shifts[i]; |
| |
mat = ScopyArray(resmat[i]); |
| |
for (j=0; j<Length(mat); j++) { |
| |
mat[j] = Init_w_m(mat[j],w,m); |
| |
} |
| |
ans[i] = mat; |
| |
} |
| |
return(ans); |
| |
} |
| |
HelpAdd(["Sinit_w", |
| |
["Sinit_w(resmat,w) returns the initial of the complex resmat with respect to the weight w.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];", |
| |
" Sweyl(\"x,y\",[w]); b = Reparse(b);", |
| |
" c=Sinit_w(b,w); c:" |
| |
]]); |
| |
|
| |
/* This method does not work, because we have zero rows. |
| |
Think about it later. */ |
| |
def SbettiTable(rtable) { |
| |
local ans,i,j,pp; |
| |
ans = SnewArrayOfFormat(rtable); |
| |
for (i=0; i<Length(rtable); i++) { |
| |
pp = 0; |
| |
for (j=0; j<Length(rtable[i]); j++) { |
| |
if (rtable[i,j] != 0) {pp = pp+1;} |
| |
} |
| |
ans[i] = pp; |
| |
} |
| |
return(ans); |
| |
} |
| |
|
| |
def BfRoots1(G,V) { |
| |
local bb,ans; |
| |
sm1(" /BFparlist [ ] def "); |
| |
if (IsString(V)) { |
| |
sm1(" [ V to_records pop ] /V set "); |
| |
}else { |
| |
sm1(" V { toString } map /V set "); |
| |
} |
| |
sm1(" /BFvarlist V def "); |
| |
|
| |
sm1(" G flatten { toString } map /G set "); |
| |
sm1(" G V bfm /bb set "); |
| |
if (IsSm1Integer(bb)) { |
| |
return([ ]); |
| |
} |
| |
sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); |
| |
return([ans, bb]); |
| |
} |
| |
|
| |
HelpAdd(["BfRoots1", |
| |
["BfRoots1(g,v) returns the integral roots of g with respect to the weight", |
| |
"vector (1,1,...,1) and the b-function itself", |
| |
"Example: BfRoots1([x*Dx-2, y*Dy-3],[x,y]);" |
| |
]]); |
| |
|
| |
|
| |
|