[BACK]Return to minimal.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Diff for /OpenXM/src/k097/lib/minimal/minimal.k between version 1.28 and 1.36

version 1.28, 2000/08/21 07:45:22 version 1.36, 2007/07/03 22:28:11
Line 1 
Line 1 
 /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.27 2000/08/16 22:38:52 takayama Exp $ */  /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.35 2007/07/03 22:05:46 takayama Exp $ */
 #define DEBUG 1  #define DEBUG 1
 Sordinary = false;  Sordinary = false;
 /* If you run this program on openxm version 1.1.2 (FreeBSD),  /* If you run this program on openxm version 1.1.2 (FreeBSD),
Line 44  def Sprint2(s) {
Line 44  def Sprint2(s) {
   
 */  */
   
   /* We cannot use load command in the if statement. */
   load("lib/minimal/cohom.k");
   Load_sm1(["k0-tower.sm1","lib/minimal/k0-tower.sm1"],"k0-tower.sm1.loaded");
   Load_sm1(["new.sm1","lib/minimal/new.sm1"],"new.sm1.loaded");
   sm1(" oxNoX ");
   
 load("cohom.k");  
 def load_tower() {  
   if (Boundp("k0-tower.sm1.loaded")) {  
   }else{  
     sm1(" [(parse) (k0-tower.sm1) pushfile ] extension ");  
     sm1(" [(parse) (new.sm1) pushfile ] extension ");  
     sm1(" /k0-tower.sm1.loaded 1 def ");  
   }  
   sm1(" oxNoX ");  
 }  
 load_tower();  
 SonAutoReduce = true;  SonAutoReduce = true;
 def Factor(f) {  def Factor(f) {
    sm1(f, " fctr /FunctionValue set");     sm1(f, " fctr /FunctionValue set");
Line 145  def Max(v) {
Line 139  def Max(v) {
 HelpAdd(["Max",  HelpAdd(["Max",
 ["Max(v) returns the maximal element in v."]]);  ["Max(v) returns the maximal element in v."]]);
   
   def Kernel(f,v) {
     local ans;
     /* v :  string or ring */
     if (Length(Arglist) < 2) {
       sm1(" [f] syz /ans set ");
     }else{
       sm1(" [f v] syz /ans set ");
     }
     return(ans);
   }
   def Syz(f) {
     sm1(" [f] syz /FunctionValue set ");
   }
   HelpAdd(["Kernel",
   ["Kernel(f) returns the syzygy of f.",
    "Return value [b, c]: b is a set of generators of the syzygies of f",
    "                   : c=[gb, backward transformation, syzygy without",
    "                                                   dehomogenization",
    "Example:  Weyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ",
    "          s=Kernel([x*Dx+1,Dx^2+x^5]); s[0]:"]]);
   /* cf. sm1_syz in cohom.k */
   def Gb(f) {
     sm1(" [f] gb /FunctionValue set ");
   }
   HelpAdd(["Gb",
   ["Gb(f) returns the Groebner basis of f.",
    "cf. Kernel, Weyl."]]);
   
   
 /*  End of standard functions that should be moved to standard libraries. */  /*  End of standard functions that should be moved to standard libraries. */
 def test0() {  def test0() {
   local f;    local f;
Line 165  def test1() {
Line 188  def test1() {
 }  }
   
   
   
 def Sweyl(v,w) {  def Sweyl(v,w) {
   /* extern WeightOfSweyl ; */    /* extern WeightOfSweyl ; */
   local ww,i,n;    local ww,i,n;
Line 224  def StoTower() {
Line 246  def StoTower() {
 }  }
   
 def SsetTower(tower) {  def SsetTower(tower) {
 sm1(" [(AvoidTheSameRing)] pushEnv  sm1(" [(AvoidTheSameRing)] pushEnv \
       [ [(AvoidTheSameRing) 0] system_variable        [ [(AvoidTheSameRing) 0] system_variable \
         [(gbListTower) tower (list) dc] system_variable          [(gbListTower) tower (list) dc] system_variable \
       ] pop popEnv ");        ] pop popEnv ");
       /* sm1("(hoge) message show_ring "); */        /* sm1("(hoge) message show_ring "); */
 }  }
Line 336  def NewPolynomialVector(size) {
Line 358  def NewPolynomialVector(size) {
 }  }
   
 def  SturnOffHomogenization() {  def  SturnOffHomogenization() {
   sm1("    sm1(" \
     [(Homogenize)] system_variable 1 eq      [(Homogenize)] system_variable 1 eq \
     { Sverbose {      { Sverbose { \
       (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message } { } ifelse        (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message } { } ifelse \
       [(Homogenize) 0] system_variable        [(Homogenize) 0] system_variable \
       [(ReduceLowerTerms) 0] system_variable        [(ReduceLowerTerms) 0] system_variable \
     } {  } ifelse      } {  } ifelse \
   ");    ");
 }  }
 /* NOTE!!!  Be careful these changes of global environmental variables.  /* NOTE!!!  Be careful these changes of global environmental variables.
Line 350  def  SturnOffHomogenization() {
Line 372  def  SturnOffHomogenization() {
    after computation and interruption.  August 15, 2000.     after computation and interruption.  August 15, 2000.
 */  */
 def  SturnOnHomogenization() {  def  SturnOnHomogenization() {
   sm1("    sm1(" \
     [(Homogenize)] system_variable 0 eq      [(Homogenize)] system_variable 0 eq \
     { Sverbose {      { Sverbose { \
         (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message } {  } ifelse          (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message } {  } ifelse \
       [(Homogenize) 1] system_variable        [(Homogenize) 1] system_variable \
       [(ReduceLowerTerms) 1] system_variable        [(ReduceLowerTerms) 1] system_variable \
     } {  } ifelse      } {  } ifelse \
   ");    ");
 }  }
   
Line 987  HelpAdd(["Sminimal",
Line 1009  HelpAdd(["Sminimal",
  "         Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",   "         Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",
  "         b = ReParse(a[0]); sm1_pmat(b); ",   "         b = ReParse(a[0]); sm1_pmat(b); ",
  "         IsExact_h(b,[x,y]):",   "         IsExact_h(b,[x,y]):",
  "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]);   "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution.",
    " ---> D^{m_3} --b[2]--> D^{m_2} --b[1]--> D^{m_1} --b[0]--> D^{m_0} ",
    "  Here D^{m_i} are the set of row vectors. "
    ]]);
   
 def Sminimal(g,opt) {  def Sminimal(g,opt) {
   local r, freeRes, redundantTable, reducer, maxLevel,    local r, freeRes, redundantTable, reducer, maxLevel,
Line 1454  HelpAdd(["IsSameIdeal_h",
Line 1479  HelpAdd(["IsSameIdeal_h",
  "cf. ReParse"   "cf. ReParse"
 ]]);  ]]);
   
 def ReParse(a) {  /*
   local c;    Output of S* functions may cause a trouble because it uses Schreyer orders.
   if (IsArray(a)) {    In this case, use ReParse().
     c = Map(a,"ReParse");  */
   }else{  
     sm1(a," toString . /c set");  
   }  
   return(c);  
 }  
 HelpAdd(["ReParse",  
 ["Reparse(obj): obj",  
  "It parses the given object in the current ring.",  
  "Outputs from SlaScala, Sschreyer may cause a trouble in other functions,",  
  "because it uses the Schreyer order.",  
  "In this case, ReParse the outputs from these functions.",  
  "cf. IsExaxt_h"  
 ]]);  
   
 def ScheckIfSchreyer(s) {  def ScheckIfSchreyer(s) {
   local ss;    local ss;
Line 1564  def SbettiTable(rtable) {
Line 1576  def SbettiTable(rtable) {
     ans[i] = pp;      ans[i] = pp;
   }    }
   return(ans);    return(ans);
 }  
   
   }
   
   def BfRoots1(G,V) {
      local bb,ans;
      sm1(" /BFparlist [ ] def ");
      if (IsString(V)) {
         sm1(" [ V to_records pop ] /V set ");
      }else {
        sm1(" V { toString } map /V set ");
      }
      sm1(" /BFvarlist V def ");
   
      sm1(" G flatten { toString } map  /G set ");
      sm1(" G V bfm /bb set ");
      if (IsSm1Integer(bb)) {
        return([ ]);
      }
      sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
      return([ans, bb]);
   }
   
   HelpAdd(["BfRoots1",
   ["BfRoots1(g,v) returns the integral roots of g with respect to the weight",
    "vector (1,1,...,1) and the b-function itself",
    "Example:  BfRoots1([x*Dx-2, y*Dy-3],[x,y]);"
   ]]);
   
   
   

Legend:
Removed from v.1.28  
changed lines
  Added in v.1.36

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>