[BACK]Return to minimal.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Diff for /OpenXM/src/k097/lib/minimal/minimal.k between version 1.27 and 1.30

version 1.27, 2000/08/16 22:38:52 version 1.30, 2000/11/19 05:50:30
Line 1 
Line 1 
 /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.26 2000/08/10 02:59:08 takayama Exp $ */  /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.29 2000/08/22 05:34:06 takayama Exp $ */
 #define DEBUG 1  #define DEBUG 1
 Sordinary = false;  Sordinary = false;
 /* If you run this program on openxm version 1.1.2 (FreeBSD),  /* If you run this program on openxm version 1.1.2 (FreeBSD),
Line 145  def Max(v) {
Line 145  def Max(v) {
 HelpAdd(["Max",  HelpAdd(["Max",
 ["Max(v) returns the maximal element in v."]]);  ["Max(v) returns the maximal element in v."]]);
   
   def Kernel(f) {
     sm1(" [f] syz /FunctionValue set ");
   }
   def Syz(f) {
     sm1(" [f] syz /FunctionValue set ");
   }
   HelpAdd(["Kernel",
   ["Kernel(f) returns the syzygy of f.",
    "Return value [b, c]: b is a set of generators of the syzygies of f",
    "                   : c=[gb, backward transformation, syzygy without",
    "                                                   dehomogenization",
    "Example:  Weyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ",
    "          s=Kernel([x*Dx+1,Dx^2+x^5]); s[0]:"]]);
   /* cf. sm1_syz in cohom.k */
   def Gb(f) {
     sm1(" [f] gb /FunctionValue set ");
   }
   HelpAdd(["Gb",
   ["Gb(f) returns the Groebner basis of f.",
    "cf. Kernel, Weyl."]]);
   
   
 /*  End of standard functions that should be moved to standard libraries. */  /*  End of standard functions that should be moved to standard libraries. */
 def test0() {  def test0() {
   local f;    local f;
Line 165  def test1() {
Line 187  def test1() {
 }  }
   
   
   
 def Sweyl(v,w) {  def Sweyl(v,w) {
   /* extern WeightOfSweyl ; */    /* extern WeightOfSweyl ; */
   local ww,i,n;    local ww,i,n;
Line 1006  def Sminimal(g,opt) {
Line 1027  def Sminimal(g,opt) {
   redundantTable = r[1];    redundantTable = r[1];
   reducer = r[2];    reducer = r[2];
   bettiTable = SbettiTable(redundantTable);    bettiTable = SbettiTable(redundantTable);
   Sprintln2("Betti numbers are ------");    Sprintln2("BettiTable ------");
   if (Sverbose || Sverbose2) {sm1_pmat(bettiTable);}    if (Sverbose || Sverbose2) {sm1_pmat(bettiTable);}
   minRes = SnewArrayOfFormat(freeRes);    minRes = SnewArrayOfFormat(freeRes);
   seq = 0;    seq = 0;
Line 1070  def Sminimal(g,opt) {
Line 1091  def Sminimal(g,opt) {
    Println("0: minimal resolution, 3: Schreyer resolution ");     Println("0: minimal resolution, 3: Schreyer resolution ");
    Println("------------ Resolution Summary  --------------");     Println("------------ Resolution Summary  --------------");
    Print("Betti numbers : ");     Print("Betti numbers : ");
    Println(Map(ansSminimal[0],"Length"));     Println(Join([Length(ansSminimal[0,0,0])],Map(ansSminimal[0],"Length")));
    Print("Betti numbers of the Schreyer frame: ");     Print("Betti numbers of the Schreyer frame: ");
    Println(Map(ansSminimal[3],"Length"));     Println(Join([Length(ansSminimal[3,0,0])],Map(ansSminimal[3],"Length")));
    Println("-----------------------------------------------");     Println("-----------------------------------------------");
   
    sm1(" restoreEnvAfterResolution ");     sm1(" restoreEnvAfterResolution ");
Line 1509  HelpAdd(["SgetShift",
Line 1530  HelpAdd(["SgetShift",
 def SgetShifts(resmat,w) {  def SgetShifts(resmat,w) {
   local i,n,ans,m0;    local i,n,ans,m0;
   n = Length(resmat);    n = Length(resmat);
   ans = NewArray(n);    ans = NewArray(n+1);
   m0 = NewArray(Length(resmat[0,0]));    m0 = NewArray(Length(resmat[0,0]));
   ans[0] = m0;    ans[0] = m0;
   for (i=0; i<n-1; i++) {    for (i=0; i<n; i++) {
     ans[i+1] = SgetShift(resmat[i],w,m0);      ans[i+1] = SgetShift(resmat[i],w,m0);
     m0 = ans[i+1];      m0 = ans[i+1];
   }    }
Line 1564  def SbettiTable(rtable) {
Line 1585  def SbettiTable(rtable) {
     ans[i] = pp;      ans[i] = pp;
   }    }
   return(ans);    return(ans);
 }  
   
   }
   
   def BfRoots1(G,V) {
      local bb,ans;
      sm1(" /BFparlist [ ] def ");
      if (IsString(V)) {
         sm1(" [ V to_records pop ] /V set ");
      }else {
        sm1(" V { toString } map /V set ");
      }
      sm1(" /BFvarlist V def ");
   
      sm1(" G flatten { toString } map  /G set ");
      sm1(" G V bfm /bb set ");
      if (IsSm1Integer(bb)) {
        return([ ]);
      }
      sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
      return([ans, bb]);
   }
   
   HelpAdd(["BfRoots1",
   ["BfRoots1(g,v) returns the integral roots of g with respect to the weight",
    "vector (1,1,...,1) and the b-function itself",
    "Example:  BfRoots1([x*Dx-2, y*Dy-3],[x,y]);"
   ]]);
   
   
   

Legend:
Removed from v.1.27  
changed lines
  Added in v.1.30

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>