version 1.19, 2000/07/31 01:21:41 |
version 1.27, 2000/08/16 22:38:52 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.18 2000/07/30 02:26:25 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.26 2000/08/10 02:59:08 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
Sordinary = false; |
Sordinary = false; |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
Line 7 Sordinary = false; |
|
Line 7 Sordinary = false; |
|
*/ |
*/ |
#define OFFSET 0 |
#define OFFSET 0 |
/* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
|
Sverbose = false; /* Be extreamly verbose */ |
|
Sverbose2 = true; /* Don't be quiet and show minimal information */ |
|
def Sprintln(s) { |
|
if (Sverbose) Println(s); |
|
} |
|
def Sprint(s) { |
|
if (Sverbose) Print(s); |
|
} |
|
def Sprintln2(s) { |
|
if (Sverbose2) Println(s); |
|
} |
|
def Sprint2(s) { |
|
if (Sverbose2) Print(s); |
|
sm1(" [(flush)] extension "); |
|
} |
|
|
/* Test sequences. |
/* Test sequences. |
Use load["minimal.k"];; |
Use load["minimal.k"];; |
|
|
Line 34 def load_tower() { |
|
Line 50 def load_tower() { |
|
if (Boundp("k0-tower.sm1.loaded")) { |
if (Boundp("k0-tower.sm1.loaded")) { |
}else{ |
}else{ |
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
|
sm1(" [(parse) (new.sm1) pushfile ] extension "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
} |
} |
sm1(" oxNoX "); |
sm1(" oxNoX "); |
Line 50 def Sgroebner(f) { |
|
Line 67 def Sgroebner(f) { |
|
sm1(" [f] groebner /FunctionValue set"); |
sm1(" [f] groebner /FunctionValue set"); |
} |
} |
|
|
|
def Sinvolutive(f,w) { |
|
local g,m; |
|
if (IsArray(f[0])) { |
|
m = NewArray(Length(f[0])); |
|
}else{ |
|
m = [0]; |
|
} |
|
g = Sgroebner(f); |
|
/* This is a temporary code. */ |
|
sm1(" g 0 get { w m init_w<m>} map /FunctionValue set "); |
|
} |
|
|
|
|
|
|
def Error(s) { |
def Error(s) { |
sm1(" s error "); |
sm1(" s error "); |
} |
} |
|
|
return(r); |
return(r); |
} |
} |
|
|
|
def Ord_w_m(f,w,m) { |
|
sm1(" f w m ord_w<m> { (universalNumber) dc } map /FunctionValue set "); |
|
} |
|
HelpAdd(["Ord_w_m", |
|
["Ord_w_m(f,w,m) returns the order of f with respect to w with the shift m.", |
|
"Note that the order of the ring and the weight w must be the same.", |
|
"When f is zero, it returns -intInfinity = -999999999.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
|
" Ord_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
|
|
|
def Init_w_m(f,w,m) { |
|
sm1(" f w m init_w<m> /FunctionValue set "); |
|
} |
|
HelpAdd(["Init_w_m", |
|
["Init_w_m(f,w,m) returns the initial of f with respect to w with the shift m.", |
|
"Note that the order of the ring and the weight w must be the same.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
|
" Init_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
|
|
|
def Max(v) { |
|
local i,t,n; |
|
n = Length(v); |
|
if (n == 0) return(null); |
|
t = v[0]; |
|
for (i=0; i<n; i++) { |
|
if (v[i] > t) { t = v[i];} |
|
} |
|
return(t); |
|
} |
|
HelpAdd(["Max", |
|
["Max(v) returns the maximal element in v."]]); |
|
|
/* End of standard functions that should be moved to standard libraries. */ |
/* End of standard functions that should be moved to standard libraries. */ |
def test0() { |
def test0() { |
local f; |
local f; |
Line 193 def SresolutionFrameWithTower(g,opt) { |
|
Line 255 def SresolutionFrameWithTower(g,opt) { |
|
} |
} |
} |
} |
} |
} |
}else{ |
} else if (IsNull(opt)){ |
|
} else { |
Println("Warning: option should be given by an array."); |
Println("Warning: option should be given by an array."); |
|
Println(opt); |
|
Println("--------------------------------------------"); |
} |
} |
} |
} |
|
|
Line 229 def SresolutionFrameWithTower(g,opt) { |
|
Line 294 def SresolutionFrameWithTower(g,opt) { |
|
/* -sugar is fine? */ |
/* -sugar is fine? */ |
sm1(" setupEnvForResolution "); |
sm1(" setupEnvForResolution "); |
|
|
Println(g); |
Sprintln(g); |
startingGB = g; |
startingGB = g; |
/* ans = [ SzeroMap(g) ]; It has not been implemented. see resol1.withZeroMap */ |
/* ans = [ SzeroMap(g) ]; It has not been implemented. see resol1.withZeroMap */ |
ans = [ ]; |
ans = [ ]; |
Line 273 def NewPolynomialVector(size) { |
|
Line 338 def NewPolynomialVector(size) { |
|
def SturnOffHomogenization() { |
def SturnOffHomogenization() { |
sm1(" |
sm1(" |
[(Homogenize)] system_variable 1 eq |
[(Homogenize)] system_variable 1 eq |
{ (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message |
{ Sverbose { |
|
(Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message } { } ifelse |
[(Homogenize) 0] system_variable |
[(Homogenize) 0] system_variable |
[(ReduceLowerTerms) 0] system_variable |
[(ReduceLowerTerms) 0] system_variable |
} { } ifelse |
} { } ifelse |
"); |
"); |
} |
} |
|
/* NOTE!!! Be careful these changes of global environmental variables. |
|
We should make a standard set of values and restore these values |
|
after computation and interruption. August 15, 2000. |
|
*/ |
def SturnOnHomogenization() { |
def SturnOnHomogenization() { |
sm1(" |
sm1(" |
[(Homogenize)] system_variable 0 eq |
[(Homogenize)] system_variable 0 eq |
{ (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message |
{ Sverbose { |
|
(Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message } { } ifelse |
[(Homogenize) 1] system_variable |
[(Homogenize) 1] system_variable |
[(ReduceLowerTerms) 1] system_variable |
[(ReduceLowerTerms) 1] system_variable |
} { } ifelse |
} { } ifelse |
Line 330 def Sres0FrameWithSkelton(g) { |
|
Line 401 def Sres0FrameWithSkelton(g) { |
|
si = pair[1,0]; |
si = pair[1,0]; |
sj = pair[1,1]; |
sj = pair[1,1]; |
/* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */ |
/* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */ |
Print("."); |
Sprint("."); |
|
|
t_syz = NewPolynomialVector(gLength); |
t_syz = NewPolynomialVector(gLength); |
t_syz[i] = si; |
t_syz[i] = si; |
Line 338 def Sres0FrameWithSkelton(g) { |
|
Line 409 def Sres0FrameWithSkelton(g) { |
|
syzAll[k] = t_syz; |
syzAll[k] = t_syz; |
} |
} |
t_syz = syzAll; |
t_syz = syzAll; |
Print("Done. betti="); Println(betti); |
Sprint("Done. betti="); Sprintln(betti); |
/* Println(g); g is in a format such as |
/* Println(g); g is in a format such as |
[e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
[e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
[e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
[e_*x^2 , e_*x*y , 2*x*Dx*h , ...] |
Line 358 def StotalDegree(f) { |
|
Line 429 def StotalDegree(f) { |
|
return(d0); |
return(d0); |
} |
} |
|
|
|
HelpAdd(["Sord_w", |
|
["Sord_w(f,w) returns the w-order of f", |
|
"Example: Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]):"]]); |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
def Sord_w(f,w) { |
def Sord_w(f,w) { |
local neww,i,n; |
local neww,i,n; |
Line 391 def test_SinitOfArray() { |
|
Line 465 def test_SinitOfArray() { |
|
f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2, |
f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2, |
-y^2*z^2 + x*z^3 + y*z^3, -z^4]; |
-y^2*z^2 + x*z^3 + y*z^3, -z^4]; |
p=SresolutionFrameWithTower(f); |
p=SresolutionFrameWithTower(f); |
sm1_pmat(p); |
if (Sverbose) { |
sm1_pmat(SgenerateTable(p[1])); |
sm1_pmat(p); |
|
sm1_pmat(SgenerateTable(p[1])); |
|
} |
return(p); |
return(p); |
frame = p[0]; |
frame = p[0]; |
sm1_pmat(p[1]); |
sm1_pmat(p[1]); |
Line 418 def SgenerateTable(tower) { |
|
Line 494 def SgenerateTable(tower) { |
|
local height, n,i,j, ans, ans_at_each_floor; |
local height, n,i,j, ans, ans_at_each_floor; |
|
|
/* |
/* |
Print("SgenerateTable: tower=");Println(tower); |
Sprint("SgenerateTable: tower=");Sprintln(tower); |
sm1(" print_switch_status "); */ |
sm1(" print_switch_status "); */ |
height = Length(tower); |
height = Length(tower); |
ans = NewArray(height); |
ans = NewArray(height); |
Line 503 def SlaScala(g,opt) { |
|
Line 579 def SlaScala(g,opt) { |
|
reductionTable_tmp; |
reductionTable_tmp; |
/* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
Sprint("WeightOfSweyl="); Sprintln(WeightOfSweyl); |
rf = SresolutionFrameWithTower(g,opt); |
rf = SresolutionFrameWithTower(g,opt); |
Print("rf="); sm1_pmat(rf); |
Sprint("rf="); if (Sverbose) {sm1_pmat(rf);} |
redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
tower = rf[1]; |
tower = rf[1]; |
|
|
Println("Generating reduction table which gives an order of reduction."); |
Sprintln("Generating reduction table which gives an order of reduction."); |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Sprint("WeghtOfSweyl="); Sprintln(WeightOfSweyl); |
Print("tower"); Println(tower); |
Sprint2("tower="); Sprintln2(tower); |
reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
Print("reductionTable="); sm1_pmat(reductionTable); |
Sprint2("reductionTable="); |
|
if (Sverbose || Sverbose2) {sm1_pmat(reductionTable);} |
|
|
skel = rf[2]; |
skel = rf[2]; |
redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
Line 532 def SlaScala(g,opt) { |
|
Line 609 def SlaScala(g,opt) { |
|
while (SthereIs(reductionTable_tmp,strategy)) { |
while (SthereIs(reductionTable_tmp,strategy)) { |
i = SnextI(reductionTable_tmp,strategy,redundantTable, |
i = SnextI(reductionTable_tmp,strategy,redundantTable, |
skel,level,freeRes); |
skel,level,freeRes); |
Println([level,i]); |
Sprintln([level,i]); |
reductionTable_tmp[i] = -200000; |
reductionTable_tmp[i] = -200000; |
if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
Print("Processing [level,i]= "); Print([level,i]); |
Sprint("Processing [level,i]= "); Sprint([level,i]); |
Print(" Strategy = "); Println(strategy); |
Sprint(" Strategy = "); Sprintln(strategy); |
|
Sprint2(strategy); |
if (level == 0) { |
if (level == 0) { |
if (IsNull(redundantTable[level,i])) { |
if (IsNull(redundantTable[level,i])) { |
bases = freeRes[level]; |
bases = freeRes[level]; |
Line 562 if (Sordinary) { |
|
Line 640 if (Sordinary) { |
|
}else{ |
}else{ |
if (f[4] > f[5]) { |
if (f[4] > f[5]) { |
/* Zero in the gr-module */ |
/* Zero in the gr-module */ |
Print("v-degree of [org,remainder] = "); |
Sprint("v-degree of [org,remainder] = "); |
Println([f[4],f[5]]); |
Sprintln([f[4],f[5]]); |
Print("[level,i] = "); Println([level,i]); |
Sprint("[level,i] = "); Sprintln([level,i]); |
redundantTable[level-1,place] = 0; |
redundantTable[level-1,place] = 0; |
}else{ |
}else{ |
redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
Line 596 if (Sordinary) { |
|
Line 674 if (Sordinary) { |
|
} |
} |
strategy++; |
strategy++; |
} |
} |
|
Sprintln2(" "); |
n = Length(freeRes); |
n = Length(freeRes); |
freeResV = SnewArrayOfFormat(freeRes); |
freeResV = SnewArrayOfFormat(freeRes); |
for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
Line 643 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
Line 722 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
} |
} |
} |
} |
} |
} |
Print("reductionTable_tmp="); |
Sprint("reductionTable_tmp="); |
Println(reductionTable_tmp); |
Sprintln(reductionTable_tmp); |
Println("See also reductionTable, strategy, level,i"); |
Sprintln("See also reductionTable, strategy, level,i"); |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
} |
} |
|
|
Line 679 def SwhereInGB(f,tower) { |
|
Line 758 def SwhereInGB(f,tower) { |
|
q = MonomialPart(f); |
q = MonomialPart(f); |
if (p == q) return(i); |
if (p == q) return(i); |
} |
} |
Println([f,tower]); |
Sprintln([f,tower]); |
Error("whereInGB : [f,myset]: f could not be found in the myset."); |
Error("whereInGB : [f,myset]: f could not be found in the myset."); |
} |
} |
def SunitOfFormat(pos,forms) { |
def SunitOfFormat(pos,forms) { |
Line 733 def SwhereInTower(f,tower) { |
|
Line 812 def SwhereInTower(f,tower) { |
|
q = MonomialPart(f); |
q = MonomialPart(f); |
if (p == q) return(i); |
if (p == q) return(i); |
} |
} |
Println([f,tower]); |
Sprintln([f,tower]); |
Error("[f,tower]: f could not be found in the tower."); |
Error("[f,tower]: f could not be found in the tower."); |
} |
} |
|
|
Line 745 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 824 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
local i, j, myindex, p, bases, tower2, gi, gj, |
local i, j, myindex, p, bases, tower2, gi, gj, |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
vdeg,vdeg_reduced; |
vdeg,vdeg_reduced; |
Println("SpairAndReduction:"); |
Sprintln("SpairAndReduction:"); |
|
|
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
p = skel[level,ii]; |
p = skel[level,ii]; |
myindex = p[0]; |
myindex = p[0]; |
i = myindex[0]; j = myindex[1]; |
i = myindex[0]; j = myindex[1]; |
bases = freeRes[level-1]; |
bases = freeRes[level-1]; |
Println(["p and bases ",p,bases]); |
Sprintln(["p and bases ",p,bases]); |
if (IsNull(bases[i]) || IsNull(bases[j])) { |
if (IsNull(bases[i]) || IsNull(bases[j])) { |
Println([level,i,j,bases[i],bases[j]]); |
Sprintln([level,i,j,bases[i],bases[j]]); |
Error("level, i, j : bases[i], bases[j] must not be NULL."); |
Error("level, i, j : bases[i], bases[j] must not be NULL."); |
} |
} |
|
|
tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
SsetTower(tower2); |
SsetTower(tower2); |
Println(["level=",level]); |
Sprintln(["level=",level]); |
Println(["tower2=",tower2]); |
Sprintln(["tower2=",tower2]); |
/** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
|
|
gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
Line 772 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 851 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
sj = ssp[0,1]; |
sj = ssp[0,1]; |
syzHead = si*es^i; |
syzHead = si*es^i; |
/* This will be the head term, I think. But, double check. */ |
/* This will be the head term, I think. But, double check. */ |
Println([si*es^i,sj*es^j]); |
Sprintln([si*es^i,sj*es^j]); |
|
|
Print("[gi, gj] = "); Println([gi,gj]); |
Sprint("[gi, gj] = "); Sprintln([gi,gj]); |
sm1(" [(Homogenize)] system_variable message "); |
sm1(" [(Homogenize)] system_variable "); |
Print("Reduce the element "); Println(si*gi+sj*gj); |
Sprint("Reduce the element "); Sprintln(si*gi+sj*gj); |
Print("by "); Println(bases); |
Sprint("by "); Sprintln(bases); |
|
|
tmp = Sreduction(si*gi+sj*gj, bases); |
tmp = Sreduction(si*gi+sj*gj, bases); |
|
|
Print("result is "); Println(tmp); |
Sprint("result is "); Sprintln(tmp); |
|
|
/* This is essential part for V-minimal resolution. */ |
/* This is essential part for V-minimal resolution. */ |
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
vdeg = SvDegree(si*gi,tower,level-1,ww); |
vdeg = SvDegree(si*gi,tower,level-1,ww); |
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
Print("vdegree of the original = "); Println(vdeg); |
Sprint("vdegree of the original = "); Sprintln(vdeg); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
Sprint("vdegree of the remainder = "); Sprintln(vdeg_reduced); |
|
|
t_syz = tmp[2]; |
t_syz = tmp[2]; |
si = si*tmp[1]+t_syz[i]; |
si = si*tmp[1]+t_syz[i]; |
Line 804 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 883 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
/* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
/* pos2 is the place to put a new GB at level-1. */ |
/* pos2 is the place to put a new GB at level-1. */ |
Println(ans); |
Sprintln(ans); |
return(ans); |
return(ans); |
} |
} |
|
|
Line 896 def Sbases_to_vec(bases,size) { |
|
Line 975 def Sbases_to_vec(bases,size) { |
|
|
|
HelpAdd(["Sminimal", |
HelpAdd(["Sminimal", |
["It constructs the V-minimal free resolution by LaScala's algorithm", |
["It constructs the V-minimal free resolution by LaScala's algorithm", |
"option: \"homogenized\" (no automatic homogenization ", |
"option: \"homogenized\" (no automatic homogenization)", |
" : \"Sordinary\" (no (u,v)-minimal resolution)", |
" : \"Sordinary\" (no (u,v)-minimal resolution)", |
"Options should be given as an array.", |
"Options should be given as an array.", |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
Line 913 HelpAdd(["Sminimal", |
|
Line 992 HelpAdd(["Sminimal", |
|
def Sminimal(g,opt) { |
def Sminimal(g,opt) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq, tminRes; |
betti_levelplus, newbases, i, j,qq, tminRes,bettiTable, ansSminimal; |
if (Length(Arglist) < 2) { |
if (Length(Arglist) < 2) { |
opt = null; |
opt = null; |
} |
} |
Line 926 def Sminimal(g,opt) { |
|
Line 1005 def Sminimal(g,opt) { |
|
freeRes = r[0]; |
freeRes = r[0]; |
redundantTable = r[1]; |
redundantTable = r[1]; |
reducer = r[2]; |
reducer = r[2]; |
|
bettiTable = SbettiTable(redundantTable); |
|
Sprintln2("Betti numbers are ------"); |
|
if (Sverbose || Sverbose2) {sm1_pmat(bettiTable);} |
minRes = SnewArrayOfFormat(freeRes); |
minRes = SnewArrayOfFormat(freeRes); |
seq = 0; |
seq = 0; |
maxSeq = SgetMaxSeq(redundantTable); |
maxSeq = SgetMaxSeq(redundantTable); |
Line 935 def Sminimal(g,opt) { |
|
Line 1017 def Sminimal(g,opt) { |
|
} |
} |
seq=maxSeq+1; |
seq=maxSeq+1; |
while (seq > 1) { |
while (seq > 1) { |
seq--; |
seq--; Sprint2(seq); |
for (level = 0; level < maxLevel; level++) { |
for (level = 0; level < maxLevel; level++) { |
betti = Length(freeRes[level]); |
betti = Length(freeRes[level]); |
for (q = 0; q<betti; q++) { |
for (q = 0; q<betti; q++) { |
if (redundantTable[level,q] == seq) { |
if (redundantTable[level,q] == seq) { |
Print("[seq,level,q]="); Println([seq,level,q]); |
Sprint("[seq,level,q]="); Sprintln([seq,level,q]); |
if (level < maxLevel-1) { |
if (level < maxLevel-1) { |
bases = freeRes[level+1]; |
bases = freeRes[level+1]; |
dr = reducer[level,q]; |
dr = reducer[level,q]; |
Line 953 def Sminimal(g,opt) { |
|
Line 1035 def Sminimal(g,opt) { |
|
for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
newbases[i] = bases[i] + bases[i,q]*dr; |
newbases[i] = bases[i] + bases[i,q]*dr; |
} |
} |
Println(["level, q =", level,q]); |
Sprintln(["level, q =", level,q]); |
Println("bases="); sm1_pmat(bases); |
Sprintln("bases="); if (Sverbose) {sm1_pmat(bases); } |
Println("dr="); sm1_pmat(dr); |
Sprintln("dr="); if (Sverbose) {sm1_pmat(dr);} |
Println("newbases="); sm1_pmat(newbases); |
Sprintln("newbases="); if (Sverbose) {sm1_pmat(newbases);} |
minRes[level+1] = newbases; |
minRes[level+1] = newbases; |
freeRes = minRes; |
freeRes = minRes; |
#ifdef DEBUG |
#ifdef DEBUG |
Line 966 def Sminimal(g,opt) { |
|
Line 1048 def Sminimal(g,opt) { |
|
for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
if (!IsZero(newbases[i,qq])) { |
if (!IsZero(newbases[i,qq])) { |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Sprint("redundantTable ="); sm1_pmat(redundantTable[level]); |
Error("Stop in Sminimal for debugging."); |
Error("Stop in Sminimal for debugging."); |
} |
} |
} |
} |
Line 979 def Sminimal(g,opt) { |
|
Line 1061 def Sminimal(g,opt) { |
|
} |
} |
} |
} |
tminRes = Stetris(minRes,redundantTable); |
tminRes = Stetris(minRes,redundantTable); |
return([SpruneZeroRow(tminRes), tminRes, |
ansSminimal = [SpruneZeroRow(tminRes), tminRes, |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]; |
|
Sprintln2(" "); |
|
Println("------------ Note -----------------------------"); |
|
Println("To get shift vectors, use Reparse and SgetShifts(resmat,w)"); |
|
Println("To get initial of the complex, use Reparse and Sinit_w(resmat,w)"); |
|
Println("0: minimal resolution, 3: Schreyer resolution "); |
|
Println("------------ Resolution Summary --------------"); |
|
Print("Betti numbers : "); |
|
Println(Map(ansSminimal[0],"Length")); |
|
Print("Betti numbers of the Schreyer frame: "); |
|
Println(Map(ansSminimal[3],"Length")); |
|
Println("-----------------------------------------------"); |
|
|
|
sm1(" restoreEnvAfterResolution "); |
|
Sordinary = false; |
|
|
|
return(ansSminimal); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
/* r[5] is the skelton */ |
/* r[5] is the skelton */ |
Line 1052 def Stetris(freeRes,redundantTable) { |
|
Line 1150 def Stetris(freeRes,redundantTable) { |
|
}else{ |
}else{ |
newbases = bases; |
newbases = bases; |
} |
} |
Println(["level=", level]); |
Sprintln(["level=", level]); |
sm1_pmat(bases); |
if (Sverbose){ |
sm1_pmat(newbases); |
sm1_pmat(bases); |
|
sm1_pmat(newbases); |
|
} |
|
|
minRes[level] = newbases; |
minRes[level] = newbases; |
} |
} |
Line 1342 HelpAdd(["IsExact_h", |
|
Line 1442 HelpAdd(["IsExact_h", |
|
"cf. ReParse" |
"cf. ReParse" |
]]); |
]]); |
|
|
|
def IsSameIdeal_h(ii,jj,v) { |
|
local a; |
|
v = ToString_array(v); |
|
a = [ii,jj,v]; |
|
sm1(a," isSameIdeal_h /FunctionValue set "); |
|
} |
|
HelpAdd(["IsSameIdeal_h", |
|
["IsSameIdeal_h(ii,jj,var): bool", |
|
"It checks the given ideals are the same or not in D<h> (homogenized Weyl algebra)", |
|
"cf. ReParse" |
|
]]); |
|
|
def ReParse(a) { |
def ReParse(a) { |
local c; |
local c; |
if (IsArray(a)) { |
if (IsArray(a)) { |
Line 1376 def ScheckIfSchreyer(s) { |
|
Line 1488 def ScheckIfSchreyer(s) { |
|
*/ |
*/ |
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
if (ss != 1) { |
if (ss != 1) { |
Print("ScheckIfSchreyer: from "); Println(s); |
Print("ScheckIfSchreyer: from "); Printl(s); |
Error("Schreyer order is not set."); |
Error("Schreyer order is not set."); |
} |
} |
/* More check will be necessary. */ |
/* More check will be necessary. */ |
return(true); |
return(true); |
|
} |
|
|
|
def SgetShift(mat,w,m) { |
|
local omat; |
|
sm1(" mat { w m ord_w<m> {(universalNumber) dc}map } map /omat set"); |
|
return(Map(omat,"Max")); |
|
} |
|
HelpAdd(["SgetShift", |
|
["SgetShift(mat,w,m) returns the shift vector of mat with respect to w with the shift m.", |
|
"Note that the order of the ring and the weight w must be the same.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
|
" SgetShift([[x*Dx+1,Dx^2+x^5],[Poly(\"0\"),x],[x,x]],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
|
|
|
def SgetShifts(resmat,w) { |
|
local i,n,ans,m0; |
|
n = Length(resmat); |
|
ans = NewArray(n); |
|
m0 = NewArray(Length(resmat[0,0])); |
|
ans[0] = m0; |
|
for (i=0; i<n-1; i++) { |
|
ans[i+1] = SgetShift(resmat[i],w,m0); |
|
m0 = ans[i+1]; |
|
} |
|
return(ans); |
|
} |
|
HelpAdd(["SgetShifts", |
|
["SgetShifts(resmat,w) returns the shift vectors of the resolution resmat", |
|
" with respect to w with the shift m.", |
|
"Note that the order of the ring and the weight w must be the same.", |
|
"Zero row is not allowed.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];", |
|
" Sweyl(\"x,y\",[w]); b = Reparse(b);", |
|
" SgetShifts(b,w):"]]); |
|
|
|
def Sinit_w(resmat,w) { |
|
local shifts,ans,n,i,m,mat,j; |
|
shifts = SgetShifts(resmat,w); |
|
n = Length(resmat); |
|
ans = NewArray(n); |
|
for (i=0; i<n; i++) { |
|
m = shifts[i]; |
|
mat = ScopyArray(resmat[i]); |
|
for (j=0; j<Length(mat); j++) { |
|
mat[j] = Init_w_m(mat[j],w,m); |
|
} |
|
ans[i] = mat; |
|
} |
|
return(ans); |
|
} |
|
HelpAdd(["Sinit_w", |
|
["Sinit_w(resmat,w) returns the initial of the complex resmat with respect to the weight w.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];", |
|
" Sweyl(\"x,y\",[w]); b = Reparse(b);", |
|
" c=Sinit_w(b,w); c:" |
|
]]); |
|
|
|
/* This method does not work, because we have zero rows. |
|
Think about it later. */ |
|
def SbettiTable(rtable) { |
|
local ans,i,j,pp; |
|
ans = SnewArrayOfFormat(rtable); |
|
for (i=0; i<Length(rtable); i++) { |
|
pp = 0; |
|
for (j=0; j<Length(rtable[i]); j++) { |
|
if (rtable[i,j] != 0) {pp = pp+1;} |
|
} |
|
ans[i] = pp; |
|
} |
|
return(ans); |
} |
} |
|
|