version 1.10, 2000/05/07 02:10:44 |
version 1.19, 2000/07/31 01:21:41 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.9 2000/05/06 13:41:12 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.18 2000/07/30 02:26:25 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
Sordinary = false; |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
make a symbolic link by the command |
make a symbolic link by the command |
ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
*/ |
*/ |
#define OFFSET 0 |
#define OFFSET 0 |
#define TOTAL_STRATEGY |
|
/* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
/* Test sequences. |
/* Test sequences. |
Use load["minimal.k"];; |
Use load["minimal.k"];; |
|
|
def Sgroebner(f) { |
def Sgroebner(f) { |
sm1(" [f] groebner /FunctionValue set"); |
sm1(" [f] groebner /FunctionValue set"); |
} |
} |
|
|
|
|
|
def Error(s) { |
|
sm1(" s error "); |
|
} |
|
|
|
def IsNull(s) { |
|
if (Stag(s) == 0) return(true); |
|
else return(false); |
|
} |
|
|
|
def MonomialPart(f) { |
|
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
|
} |
|
|
|
def Warning(s) { |
|
Print("Warning: "); |
|
Println(s); |
|
} |
|
def RingOf(f) { |
|
local r; |
|
if (IsPolynomial(f)) { |
|
if (f != Poly("0")) { |
|
sm1(f," (ring) dc /r set "); |
|
}else{ |
|
sm1(" [(CurrentRingp)] system_variable /r set "); |
|
} |
|
}else{ |
|
Warning("RingOf(f): the argument f must be a polynomial. Return the current ring."); |
|
sm1(" [(CurrentRingp)] system_variable /r set "); |
|
} |
|
return(r); |
|
} |
|
|
|
/* End of standard functions that should be moved to standard libraries. */ |
def test0() { |
def test0() { |
local f; |
local f; |
Sweyl("x,y,z"); |
Sweyl("x,y,z"); |
Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
Line 166 sm1(" [(AvoidTheSameRing)] pushEnv |
|
[ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable |
[(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable |
] pop popEnv "); |
] pop popEnv "); |
|
/* sm1("(hoge) message show_ring "); */ |
} |
} |
|
|
def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
gbasis; |
gbasis, nohomog,i,n; |
|
/* extern Sordinary */ |
|
nohomog = false; |
|
count = -1; Sordinary = false; /* default value for options. */ |
if (Length(Arglist) >= 2) { |
if (Length(Arglist) >= 2) { |
if (IsInteger(opt)) count = opt; |
if (IsArray(opt)) { |
}else{ |
n = Length(opt); |
count = -1; |
for (i=0; i<n; i++) { |
|
if (IsInteger(opt[i])) { |
|
count = opt[i]; |
|
} |
|
if (IsString(opt[i])) { |
|
if (opt[i] == "homogenized") { |
|
nohomog = true; |
|
}else if (opt[i] == "Sordinary") { |
|
Sordinary = true; |
|
}else{ |
|
Println("Warning: unknown option"); |
|
Println(opt); |
|
} |
|
} |
|
} |
|
}else{ |
|
Println("Warning: option should be given by an array."); |
|
} |
} |
} |
|
|
sm1(" setupEnvForResolution "); |
sm1(" setupEnvForResolution "); |
Line 152 def SresolutionFrameWithTower(g,opt) { |
|
Line 207 def SresolutionFrameWithTower(g,opt) { |
|
*/ |
*/ |
|
|
sm1(" (mmLarger) (matrix) switch_function "); |
sm1(" (mmLarger) (matrix) switch_function "); |
g = Map(g,"Shomogenize"); |
if (! nohomog) { |
|
Println("Automatic homogenization."); |
|
g = Map(g,"Shomogenize"); |
|
}else{ |
|
Println("No automatic homogenization."); |
|
} |
if (SonAutoReduce) { |
if (SonAutoReduce) { |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
Line 192 def SresolutionFrameWithTower(g,opt) { |
|
Line 252 def SresolutionFrameWithTower(g,opt) { |
|
} |
} |
HelpAdd(["SresolutionFrameWithTower", |
HelpAdd(["SresolutionFrameWithTower", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
|
"option: \"homogenized\" (no automatic homogenization) ", |
"Example: Sweyl(\"x,y\");", |
"Example: Sweyl(\"x,y\");", |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
|
|
def SresolutionFrame(f,opt) { |
def SresolutionFrame(f,opt) { |
local ans; |
local ans; |
ans = SresolutionFrameWithTower(f); |
ans = SresolutionFrameWithTower(f,opt); |
return(ans[0]); |
return(ans[0]); |
} |
} |
/* ---------------------------- */ |
/* ---------------------------- */ |
Line 291 def Sres0FrameWithSkelton(g) { |
|
Line 352 def Sres0FrameWithSkelton(g) { |
|
|
|
|
|
def StotalDegree(f) { |
def StotalDegree(f) { |
sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
|
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
|
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
|
return(d0); |
} |
} |
|
|
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
Line 346 def Sdegree(f,tower,level) { |
|
Line 410 def Sdegree(f,tower,level) { |
|
f = Init(f); |
f = Init(f); |
if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
i = Degree(f,es); |
i = Degree(f,es); |
#ifdef TOTAL_STRATEGY |
|
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
#endif |
|
/* Strategy must be compatible with ordering. */ |
|
/* Weight vector must be non-negative, too. */ |
|
/* See Sdegree, SgenerateTable, reductionTable. */ |
|
wd = Sord_w(f,ww); |
|
return(wd+Sdegree(tower[level-2,i],tower,level-1)); |
|
|
|
} |
} |
|
|
def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
local height, n,i,j, ans, ans_at_each_floor; |
local height, n,i,j, ans, ans_at_each_floor; |
|
|
|
/* |
|
Print("SgenerateTable: tower=");Println(tower); |
|
sm1(" print_switch_status "); */ |
height = Length(tower); |
height = Length(tower); |
ans = NewArray(height); |
ans = NewArray(height); |
for (i=0; i<height; i++) { |
for (i=0; i<height; i++) { |
Line 434 def SmaxOfStrategy(a) { |
|
Line 495 def SmaxOfStrategy(a) { |
|
} |
} |
|
|
|
|
def SlaScala(g) { |
def SlaScala(g,opt) { |
local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
Line 443 def SlaScala(g) { |
|
Line 504 def SlaScala(g) { |
|
/* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g,opt); |
|
Print("rf="); sm1_pmat(rf); |
redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
tower = rf[1]; |
tower = rf[1]; |
|
|
|
Println("Generating reduction table which gives an order of reduction."); |
|
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
|
Print("tower"); Println(tower); |
reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
|
Print("reductionTable="); sm1_pmat(reductionTable); |
|
|
skel = rf[2]; |
skel = rf[2]; |
redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
Line 467 def SlaScala(g) { |
|
Line 535 def SlaScala(g) { |
|
Println([level,i]); |
Println([level,i]); |
reductionTable_tmp[i] = -200000; |
reductionTable_tmp[i] = -200000; |
if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
Print("Processing "); Print([level,i]); |
Print("Processing [level,i]= "); Print([level,i]); |
Print(" Strategy = "); Println(strategy); |
Print(" Strategy = "); Println(strategy); |
if (level == 0) { |
if (level == 0) { |
if (IsNull(redundantTable[level,i])) { |
if (IsNull(redundantTable[level,i])) { |
Line 488 def SlaScala(g) { |
|
Line 556 def SlaScala(g) { |
|
place = f[3]; |
place = f[3]; |
/* (level-1, place) is the place for f[0], |
/* (level-1, place) is the place for f[0], |
which is a newly obtained GB. */ |
which is a newly obtained GB. */ |
#ifdef ORDINARY |
if (Sordinary) { |
redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
redundant_seq++; |
redundant_seq++; |
#else |
}else{ |
if (f[4] > f[5]) { |
if (f[4] > f[5]) { |
/* Zero in the gr-module */ |
/* Zero in the gr-module */ |
Print("v-degree of [org,remainder] = "); |
Print("v-degree of [org,remainder] = "); |
Line 502 def SlaScala(g) { |
|
Line 570 def SlaScala(g) { |
|
redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
redundant_seq++; |
redundant_seq++; |
} |
} |
#endif |
} |
redundantTable_ordinary[level-1,place] |
redundantTable_ordinary[level-1,place] |
=redundant_seq_ordinary; |
=redundant_seq_ordinary; |
redundant_seq_ordinary++; |
redundant_seq_ordinary++; |
Line 535 def SlaScala(g) { |
|
Line 603 def SlaScala(g) { |
|
bases = Sbases_to_vec(bases,bettiTable[i]); |
bases = Sbases_to_vec(bases,bettiTable[i]); |
freeResV[i] = bases; |
freeResV[i] = bases; |
} |
} |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]); |
} |
} |
|
|
def SthereIs(reductionTable_tmp,strategy) { |
def SthereIs(reductionTable_tmp,strategy) { |
Line 628 def SunitOfFormat(pos,forms) { |
|
Line 696 def SunitOfFormat(pos,forms) { |
|
return(ans); |
return(ans); |
} |
} |
|
|
def Error(s) { |
|
sm1(" s error "); |
|
} |
|
|
|
def IsNull(s) { |
|
if (Stag(s) == 0) return(true); |
|
else return(false); |
|
} |
|
|
|
def StowerOf(tower,level) { |
def StowerOf(tower,level) { |
local ans,i; |
local ans,i; |
ans = [ ]; |
ans = [ ]; |
Line 657 def Sspolynomial(f,g) { |
|
Line 717 def Sspolynomial(f,g) { |
|
sm1("f g spol /FunctionValue set"); |
sm1("f g spol /FunctionValue set"); |
} |
} |
|
|
def MonomialPart(f) { |
|
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
|
} |
|
|
|
|
/* WARNING: |
|
When you use SwhereInTower, you have to change gbList |
|
as below. Ofcourse, you should restrore the gbList |
|
SsetTower(StowerOf(tower,level)); |
|
pos = SwhereInTower(syzHead,tower[level]); |
|
*/ |
def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
local i,n,p,q; |
local i,n,p,q; |
if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
Line 697 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 760 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
|
|
tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
SsetTower(tower2); |
SsetTower(tower2); |
|
Println(["level=",level]); |
|
Println(["tower2=",tower2]); |
/** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
|
|
gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
Line 730 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 795 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
t_syz[i] = si; |
t_syz[i] = si; |
t_syz[j] = sj; |
t_syz[j] = sj; |
|
|
|
SsetTower(StowerOf(tower,level)); |
pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
|
|
|
SsetTower(StowerOf(tower,level-1)); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
/* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
Line 768 def Sreduction(f,myset) { |
|
Line 837 def Sreduction(f,myset) { |
|
return([tmp[0],tmp[1],t_syz]); |
return([tmp[0],tmp[1],t_syz]); |
} |
} |
|
|
def Warning(s) { |
|
Print("Warning: "); |
|
Println(s); |
|
} |
|
def RingOf(f) { |
|
local r; |
|
if (IsPolynomial(f)) { |
|
if (f != Poly("0")) { |
|
sm1(f," (ring) dc /r set "); |
|
}else{ |
|
sm1(" [(CurrentRingp)] system_variable /r set "); |
|
} |
|
}else{ |
|
Warning("RingOf(f): the argument f must be a polynomial. Return the current ring."); |
|
sm1(" [(CurrentRingp)] system_variable /r set "); |
|
} |
|
return(r); |
|
} |
|
|
|
def Sfrom_es(f,size) { |
def Sfrom_es(f,size) { |
local c,ans, i, d, myes, myee, j,n,r,ans2; |
local c,ans, i, d, myes, myee, j,n,r,ans2; |
Line 843 def Sbases_to_vec(bases,size) { |
|
Line 894 def Sbases_to_vec(bases,size) { |
|
return(newbases); |
return(newbases); |
} |
} |
|
|
def Sminimal(g) { |
HelpAdd(["Sminimal", |
|
["It constructs the V-minimal free resolution by LaScala's algorithm", |
|
"option: \"homogenized\" (no automatic homogenization ", |
|
" : \"Sordinary\" (no (u,v)-minimal resolution)", |
|
"Options should be given as an array.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal(v);", |
|
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" b = ReParse(a[0]); sm1_pmat(b); ", |
|
" IsExact_h(b,[x,y]):", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
def Sminimal(g,opt) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes; |
r = SlaScala(g); |
if (Length(Arglist) < 2) { |
|
opt = null; |
|
} |
|
/* Sordinary is set in SlaScala(g,opt) --> SresolutionFrameWithTower */ |
|
|
|
ScheckIfSchreyer("Sminimal:0"); |
|
r = SlaScala(g,opt); |
/* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
|
ScheckIfSchreyer("Sminimal:1"); |
freeRes = r[0]; |
freeRes = r[0]; |
redundantTable = r[1]; |
redundantTable = r[1]; |
reducer = r[2]; |
reducer = r[2]; |
Line 904 def Sminimal(g) { |
|
Line 978 def Sminimal(g) { |
|
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
return([SpruneZeroRow(tminRes), tminRes, |
|
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
|
/* r[5] is the skelton */ |
} |
} |
|
|
|
|
Line 1040 def Sannfs2(f) { |
|
Line 1116 def Sannfs2(f) { |
|
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
/* |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
|
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
|
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal_v(pp)); |
return(Sminimal(pp)); |
/* return(Sminimal(pp)); */ |
|
} |
} |
|
|
HelpAdd(["Sannfs2", |
HelpAdd(["Sannfs2", |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
"See also Sminimal_v, Sannfs3.", |
"See also Sminimal, Sannfs3.", |
"Example: a=Sannfs2(\"x^3-y^2\");", |
"Example: a=Sannfs2(\"x^3-y^2\");", |
" b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
" b[1]*b[0]:", |
" b[1]*b[0]:", |
Line 1062 HelpAdd(["Sannfs2", |
|
Line 1132 HelpAdd(["Sannfs2", |
|
" b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
" b[1]*b[0]:" |
" b[1]*b[0]:" |
]]); |
]]); |
|
/* Some samples. |
|
The betti numbers of most examples are 2,1. (0-th and 1-th). |
|
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
|
a=Sannfs2("x^3-y^2-x"); |
|
a=Sannfs2("x*y*(x-y)"); |
|
*/ |
|
|
/* Do not forget to turn on TOTAL_STRATEGY */ |
|
def Sannfs2_laScala(f) { |
|
local p,pp; |
|
p = Sannfs(f,"x,y"); |
|
/* Do not make laplace transform. |
|
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
p = [p]; |
|
*/ |
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
pp = Map(p[0],"Spoly"); |
|
return(Sminimal(pp)); |
|
} |
|
|
|
def Sannfs3(f) { |
def Sannfs3(f) { |
local p,pp; |
local p,pp; |
Line 1082 def Sannfs3(f) { |
|
Line 1146 def Sannfs3(f) { |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal_v(pp)); |
return(Sminimal(pp)); |
} |
} |
|
|
HelpAdd(["Sannfs3", |
HelpAdd(["Sannfs3", |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
"See also Sminimal_v, Sannfs2.", |
"See also Sminimal, Sannfs2.", |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
" b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
" b[1]*b[0]: b[2]*b[1]:"]]); |
" b[1]*b[0]: b[2]*b[1]:"]]); |
|
|
/* |
|
The betti numbers of most examples are 2,1. (0-th and 1-th). |
|
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
|
a=Sannfs2("x^3-y^2-x"); : it causes an error. It should be fixed. |
|
a=Sannfs2("x*y*(x-y)"); : it causes an error. It should be fixed. |
|
|
|
*/ |
|
|
|
|
|
|
|
/* The below does not use LaScala-Stillman's algorithm. */ |
|
def Sschreyer(g) { |
|
local rf, tower, reductionTable, skel, redundantTable, bases, |
|
strategy, maxOfStrategy, height, level, n, i, |
|
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
|
redundantTable_ordinary, redundant_seq_ordinary, |
|
reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase; |
|
/* extern WeightOfSweyl; */ |
|
ww = WeightOfSweyl; |
|
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
|
rf = SresolutionFrameWithTower(g); |
|
redundant_seq = 1; redundant_seq_ordinary = 1; |
|
tower = rf[1]; |
|
reductionTable = SgenerateTable(tower); |
|
skel = rf[2]; |
|
redundantTable = SnewArrayOfFormat(rf[1]); |
|
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
|
reducer = SnewArrayOfFormat(rf[1]); |
|
freeRes = SnewArrayOfFormat(rf[1]); |
|
bettiTable = SsetBettiTable(rf[1],g); |
|
|
|
height = Length(reductionTable); |
|
for (level = 0; level < height; level++) { |
|
n = Length(reductionTable[level]); |
|
for (i=0; i<n; i++) { |
|
Println([level,i]); |
|
Print("Processing "); Print([level,i]); |
|
if (level == 0) { |
|
if (IsNull(redundantTable[level,i])) { |
|
bases = freeRes[level]; |
|
/* Println(["At floor : GB=",i,bases,tower[0,i]]); */ |
|
pos = SwhereInGB(tower[0,i],rf[3,0]); |
|
bases[i] = rf[3,0,pos]; |
|
/* redundantTable[level,i] = 0; |
|
redundantTable_ordinary[level,i] = 0; */ |
|
freeRes[level] = bases; |
|
/* Println(["GB=",i,bases,tower[0,i]]); */ |
|
} |
|
}else{ /* level >= 1 */ |
|
if (IsNull(redundantTable[level,i])) { |
|
bases = freeRes[level]; |
|
f = SpairAndReduction2(skel,level,i,freeRes,tower, |
|
ww,redundantTable); |
|
if (f[0] != Poly("0")) { |
|
place = f[3]; |
|
/* (level-1, place) is the place for f[0], |
|
which is a newly obtained GB. */ |
|
#ifdef ORDINARY |
|
redundantTable[level-1,place] = redundant_seq; |
|
redundant_seq++; |
|
#else |
|
if (f[4] > f[5]) { |
|
/* Zero in the gr-module */ |
|
Print("v-degree of [org,remainder] = "); |
|
Println([f[4],f[5]]); |
|
Print("[level,i] = "); Println([level,i]); |
|
redundantTable[level-1,place] = 0; |
|
}else{ |
|
redundantTable[level-1,place] = redundant_seq; |
|
redundant_seq++; |
|
} |
|
#endif |
|
redundantTable_ordinary[level-1,place] |
|
=redundant_seq_ordinary; |
|
redundant_seq_ordinary++; |
|
bases[i] = SunitOfFormat(place,f[1])-f[1]; /* syzygy */ |
|
/* redundantTable[level,i] = 0; |
|
redundantTable_ordinary[level,i] = 0; */ |
|
/* i must be equal to f[2], I think. Double check. */ |
|
|
|
/* Correction Of Constant */ |
|
/* Correction of syzygy */ |
|
c2 = f[6]; /* or -f[6]? Double check. */ |
|
Print("c2="); Println(c2); |
|
nn = Length(bases); |
|
for (ii=0; ii<nn;ii++) { |
|
if ((ii != i) && (! IsNull(bases[ii]))) { |
|
m = Length(bases[ii]); |
|
for (jj=0; jj<m; jj++) { |
|
if (jj != place) { |
|
bases[ii,jj] = bases[ii,jj]*c2; |
|
} |
|
} |
|
} |
|
} |
|
|
|
Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
freeRes[level] = bases; |
|
Print("New freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
|
|
/* Update the freeRes[level-1] */ |
|
Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
bases = freeRes[level-1]; |
|
bases[place] = f[0]; |
|
freeRes[level-1] = bases; |
|
Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
|
|
reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
|
/* This reducer is different from that of SlaScala(). */ |
|
|
|
reducerBasis = reducer[level-1]; |
|
nn = Length(reducerBasis); |
|
for (ii=0; ii<nn;ii++) { |
|
if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
|
m = Length(reducerBasis[ii]); |
|
for (jj=0; jj<m; jj++) { |
|
if (jj != place) { |
|
reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
|
} |
|
} |
|
} |
|
} |
|
reducer[level-1] = reducerBasis; |
|
|
|
}else{ |
|
/* redundantTable[level,i] = 0; */ |
|
bases = freeRes[level]; |
|
bases[i] = f[1]; /* Put the syzygy. */ |
|
freeRes[level] = bases; |
|
} |
|
} /* end of level >= 1 */ |
|
} |
|
} /* i loop */ |
|
|
|
/* Triangulate reducer */ |
|
if (level >= 1) { |
|
Println(" "); |
|
Print("Triangulating reducer at level "); Println(level-1); |
|
Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
|
reducerBase = reducer[level-1]; |
|
Print("reducerBase="); Println(reducerBase); |
|
Println("Compare freeRes[level] and reducerBase (put -1)"); |
|
m = Length(reducerBase); |
|
for (ii=m-1; ii>=0; ii--) { |
|
if (!IsNull(reducerBase[ii])) { |
|
for (jj=ii-1; jj>=0; jj--) { |
|
if (!IsNull(reducerBase[jj])) { |
|
if (!IsZero(reducerBase[jj,ii])) { |
|
/* reducerBase[ii,ii] should be always constant. */ |
|
reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
Println("New reducer"); |
|
sm1_pmat(reducerBase); |
|
reducer[level-1] = reducerBase; |
|
} |
|
|
|
} /* level loop */ |
|
n = Length(freeRes); |
|
freeResV = SnewArrayOfFormat(freeRes); |
|
for (i=0; i<n; i++) { |
|
bases = freeRes[i]; |
|
bases = Sbases_to_vec(bases,bettiTable[i]); |
|
freeResV[i] = bases; |
|
} |
|
|
|
/* Mark the non-redundant elements. */ |
|
for (i=0; i<n; i++) { |
|
m = Length(redundantTable[i]); |
|
for (jj=0; jj<m; jj++) { |
|
if (IsNull(redundantTable[i,jj])) { |
|
redundantTable[i,jj] = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
|
} |
|
|
|
def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) { |
|
local i, j, myindex, p, bases, tower2, gi, gj, |
|
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
|
vdeg,vdeg_reduced,n,c2; |
|
Println("SpairAndReduction2 : -------------------------"); |
|
|
|
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
|
p = skel[level,ii]; |
|
myindex = p[0]; |
|
i = myindex[0]; j = myindex[1]; |
|
bases = freeRes[level-1]; |
|
Println(["p and bases ",p,bases]); |
|
if (IsNull(bases[i]) || IsNull(bases[j])) { |
|
Println([level,i,j,bases[i],bases[j]]); |
|
Error("level, i, j : bases[i], bases[j] must not be NULL."); |
|
} |
|
|
|
tower2 = StowerOf(tower,level-1); |
|
SsetTower(tower2); |
|
/** sm1(" show_ring "); */ |
|
|
|
gi = Stoes_vec(bases[i]); |
|
gj = Stoes_vec(bases[j]); |
|
|
|
ssp = Sspolynomial(gi,gj); |
|
si = ssp[0,0]; |
|
sj = ssp[0,1]; |
|
syzHead = si*es^i; |
|
/* This will be the head term, I think. But, double check. */ |
|
Println([si*es^i,sj*es^j]); |
|
|
|
Print("[gi, gj] = "); Println([gi,gj]); |
|
sm1(" [(Homogenize)] system_variable message "); |
|
Print("Reduce the element "); Println(si*gi+sj*gj); |
|
Print("by "); Println(bases); |
|
|
|
tmp = Sreduction(si*gi+sj*gj, bases); |
|
|
|
Print("result is "); Println(tmp); |
|
if (!IsZero(tmp[0])) { |
|
Print("Error: base = "); |
|
Println(Map(bases,"Stoes_vec")); |
|
Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring."); |
|
} |
|
t_syz = tmp[2]; |
|
si = si*tmp[1]+t_syz[i]; |
|
sj = sj*tmp[1]+t_syz[j]; |
|
t_syz[i] = si; |
|
t_syz[j] = sj; |
|
|
|
c2 = null; |
|
/* tmp[0] must be zero */ |
|
n = Length(t_syz); |
|
for (i=0; i<n; i++) { |
|
if (IsConstant(t_syz[i])){ |
|
if (!IsZero(t_syz[i])) { |
|
if (IsNull(redundantTable[level-1,i])) { |
|
/* i must equal to pos2 below. */ |
|
c2 = -t_syz[i]; |
|
tmp[0] = c2*Stoes_vec(freeRes[level-1,i]); |
|
t_syz[i] = 0; |
|
/* tmp[0] = t_syz . g */ |
|
/* break; does not work. Use */ |
|
i = n; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* This is essential part for V-minimal resolution. */ |
|
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
|
vdeg = SvDegree(si*gi,tower,level-1,ww); |
|
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
|
Print("vdegree of the original = "); Println(vdeg); |
|
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
|
|
|
pos = SwhereInTower(syzHead,tower[level]); |
|
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
|
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
|
/* pos is the place to put syzygy at level. */ |
|
/* pos2 is the place to put a new GB at level-1. */ |
|
Println(ans); |
|
Println(" "); |
|
return(ans); |
|
} |
|
|
|
HelpAdd(["Sminimal_v", |
|
["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
"step by step.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal_v(v);", |
|
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
|
|
def Sminimal_v(g) { |
|
local r, freeRes, redundantTable, reducer, maxLevel, |
|
minRes, seq, maxSeq, level, betti, q, bases, dr, |
|
betti_levelplus, newbases, i, j,qq,tminRes; |
|
r = Sschreyer(g); |
|
sm1_pmat(r); |
|
Debug_Sminimal_v = r; |
|
Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v"); |
|
/* Should I turn off the tower?? */ |
|
freeRes = r[0]; |
|
redundantTable = r[1]; |
|
reducer = r[2]; |
|
minRes = SnewArrayOfFormat(freeRes); |
|
seq = 0; |
|
maxSeq = SgetMaxSeq(redundantTable); |
|
maxLevel = Length(freeRes); |
|
for (level = 0; level < maxLevel; level++) { |
|
minRes[level] = freeRes[level]; |
|
} |
|
for (level = 0; level < maxLevel; level++) { |
|
betti = Length(freeRes[level]); |
|
for (q = betti-1; q>=0; q--) { |
|
if (redundantTable[level,q] > 0) { |
|
Print("[seq,level,q]="); Println([seq,level,q]); |
|
if (level < maxLevel-1) { |
|
bases = freeRes[level+1]; |
|
dr = reducer[level,q]; |
|
/* dr[q] = -1; We do not need this in our reducer format. */ |
|
/* dr[q] should be a non-zero constant. */ |
|
newbases = SnewArrayOfFormat(bases); |
|
betti_levelplus = Length(bases); |
|
/* |
|
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
|
*/ |
|
for (i=0; i<betti_levelplus; i++) { |
|
newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
|
} |
|
Println(["level, q =", level,q]); |
|
Println("bases="); sm1_pmat(bases); |
|
Println("dr="); sm1_pmat(dr); |
|
Println("newbases="); sm1_pmat(newbases); |
|
minRes[level+1] = newbases; |
|
freeRes = minRes; |
|
#ifdef DEBUG |
|
for (qq=q; qq<betti; qq++) { |
|
for (i=0; i<betti_levelplus; i++) { |
|
if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
|
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
|
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
|
Error("Stop in Sminimal for debugging."); |
|
} |
|
} |
|
} |
|
#endif |
|
} |
|
} |
|
} |
|
} |
|
tminRes = Stetris(minRes,redundantTable); |
|
return([SpruneZeroRow(tminRes), tminRes, |
|
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
|
/* r[4] is the redundantTable_ordinary */ |
|
/* r[0] is the freeResolution */ |
|
} |
|
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
Line 1548 def testAnnfs3(f) { |
|
Line 1267 def testAnnfs3(f) { |
|
Println(b[i+1]*b[i]); |
Println(b[i+1]*b[i]); |
} |
} |
return(a); |
return(a); |
} |
} |
|
|
|
def ToString_array(p) { |
|
local ans; |
|
if (IsArray(p)) { |
|
ans = Map(p,"ToString_array"); |
|
}else{ |
|
ans = ToString(p); |
|
} |
|
return(ans); |
|
} |
|
|
|
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
|
|
|
def sm1_res_div(I,J,V) { |
|
I = ToString_array(I); |
|
J = ToString_array(J); |
|
V = ToString_array(V); |
|
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
|
} |
|
|
|
/* It has not yet been working */ |
|
def sm1_res_kernel_image(m,n,v) { |
|
m = ToString_array(m); |
|
n = ToString_array(n); |
|
v = ToString_array(v); |
|
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
|
} |
|
def Skernel(m,v) { |
|
m = ToString_array(m); |
|
v = ToString_array(v); |
|
sm1(" [ m v ] syz /FunctionValue set "); |
|
} |
|
|
|
|
|
def sm1_gb(f,v) { |
|
f =ToString_array(f); |
|
v = ToString_array(v); |
|
sm1(" [f v] gb /FunctionValue set "); |
|
} |
|
|
|
|
|
def SisComplex(a) { |
|
local n,i,j,k,b,p,q; |
|
n = Length(a); |
|
for (i=0; i<n-1; i++) { |
|
if (Length(a[i+1]) != 0) { |
|
b = a[i+1]*a[i]; |
|
p = Length(b); q = Length(b[0]); |
|
for (j=0; j<p; j++) { |
|
for (k=0; k<q; k++) { |
|
if (!IsZero(b[j,k])) { |
|
Print("Is is not complex at "); |
|
Println([i,j,k]); |
|
return(false); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def IsExact_h(c,v) { |
|
local a; |
|
v = ToString_array(v); |
|
a = [c,v]; |
|
sm1(a," isExact_h /FunctionValue set "); |
|
} |
|
HelpAdd(["IsExact_h", |
|
["IsExact_h(complex,var): bool", |
|
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
|
"cf. ReParse" |
|
]]); |
|
|
|
def ReParse(a) { |
|
local c; |
|
if (IsArray(a)) { |
|
c = Map(a,"ReParse"); |
|
}else{ |
|
sm1(a," toString . /c set"); |
|
} |
|
return(c); |
|
} |
|
HelpAdd(["ReParse", |
|
["Reparse(obj): obj", |
|
"It parses the given object in the current ring.", |
|
"Outputs from SlaScala, Sschreyer may cause a trouble in other functions,", |
|
"because it uses the Schreyer order.", |
|
"In this case, ReParse the outputs from these functions.", |
|
"cf. IsExaxt_h" |
|
]]); |
|
|
|
def ScheckIfSchreyer(s) { |
|
local ss; |
|
sm1(" (report) (grade) switch_function /ss set "); |
|
if (ss != "module1v") { |
|
Print("ScheckIfSchreyer: from "); Println(s); |
|
Error("grade is not module1v"); |
|
} |
|
/* |
|
sm1(" (report) (mmLarger) switch_function /ss set "); |
|
if (ss != "tower") { |
|
Print("ScheckIfSchreyer: from "); Println(s); |
|
Error("mmLarger is not tower"); |
|
} |
|
*/ |
|
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
|
if (ss != 1) { |
|
Print("ScheckIfSchreyer: from "); Println(s); |
|
Error("Schreyer order is not set."); |
|
} |
|
/* More check will be necessary. */ |
|
return(true); |
|
} |
|
|