version 1.4, 2000/05/04 11:05:20 |
version 1.18, 2000/07/30 02:26:25 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.3 2000/05/04 06:55:28 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.17 2000/07/26 12:56:36 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
make a symbolic link by the command |
make a symbolic link by the command |
ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
*/ |
*/ |
|
#define OFFSET 0 |
|
/* #define OFFSET 20*/ |
/* Test sequences. |
/* Test sequences. |
Use load["minimal.k"];; |
Use load["minimal.k"];; |
|
|
Line 34 def load_tower() { |
|
Line 36 def load_tower() { |
|
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
} |
} |
|
sm1(" oxNoX "); |
} |
} |
load_tower(); |
load_tower(); |
SonAutoReduce = true; |
SonAutoReduce = true; |
Line 128 sm1(" [(AvoidTheSameRing)] pushEnv |
|
Line 131 sm1(" [(AvoidTheSameRing)] pushEnv |
|
[ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable |
[(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable |
] pop popEnv "); |
] pop popEnv "); |
|
/* sm1("(hoge) message show_ring "); */ |
} |
} |
|
|
def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
gbasis; |
gbasis, nohomog; |
|
nohomog = false; |
|
count = -1; |
if (Length(Arglist) >= 2) { |
if (Length(Arglist) >= 2) { |
if (IsInteger(opt)) count = opt; |
if (IsInteger(opt)) { |
|
count = opt; |
|
}else if (IsString(opt)) { |
|
if (opt == "homogenized") { |
|
nohomog = true; |
|
}else{ |
|
Println("Warning: unknown option"); |
|
Println(opt); |
|
} |
|
} |
}else{ |
}else{ |
count = -1; |
count = -1; |
} |
} |
Line 148 def SresolutionFrameWithTower(g,opt) { |
|
Line 163 def SresolutionFrameWithTower(g,opt) { |
|
*/ |
*/ |
|
|
sm1(" (mmLarger) (matrix) switch_function "); |
sm1(" (mmLarger) (matrix) switch_function "); |
g = Map(g,"Shomogenize"); |
if (! nohomog) { |
|
Println("Automatic homogenization."); |
|
g = Map(g,"Shomogenize"); |
|
}else{ |
|
Println("No automatic homogenization."); |
|
} |
if (SonAutoReduce) { |
if (SonAutoReduce) { |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
Line 188 def SresolutionFrameWithTower(g,opt) { |
|
Line 208 def SresolutionFrameWithTower(g,opt) { |
|
} |
} |
HelpAdd(["SresolutionFrameWithTower", |
HelpAdd(["SresolutionFrameWithTower", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
|
"option: \"homogenized\" (no automatic homogenization) ", |
"Example: Sweyl(\"x,y\");", |
"Example: Sweyl(\"x,y\");", |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
|
|
def SresolutionFrame(f,opt) { |
def SresolutionFrame(f,opt) { |
local ans; |
local ans; |
ans = SresolutionFrameWithTower(f); |
ans = SresolutionFrameWithTower(f,opt); |
return(ans[0]); |
return(ans[0]); |
} |
} |
/* ---------------------------- */ |
/* ---------------------------- */ |
Line 287 def Sres0FrameWithSkelton(g) { |
|
Line 308 def Sres0FrameWithSkelton(g) { |
|
|
|
|
|
def StotalDegree(f) { |
def StotalDegree(f) { |
sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
|
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
|
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
|
return(d0); |
} |
} |
|
|
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
Line 336 def test_SinitOfArray() { |
|
Line 360 def test_SinitOfArray() { |
|
|
|
/* f is assumed to be a monomial with toes. */ |
/* f is assumed to be a monomial with toes. */ |
def Sdegree(f,tower,level) { |
def Sdegree(f,tower,level) { |
local i; |
local i,ww, wd; |
|
/* extern WeightOfSweyl; */ |
|
ww = WeightOfSweyl; |
|
f = Init(f); |
if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
i = Degree(f,es); |
i = Degree(f,es); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
|
|
} |
} |
|
|
def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
local height, n,i,j, ans, ans_at_each_floor; |
local height, n,i,j, ans, ans_at_each_floor; |
|
|
|
/* |
|
Print("SgenerateTable: tower=");Println(tower); |
|
sm1(" print_switch_status "); */ |
height = Length(tower); |
height = Length(tower); |
ans = NewArray(height); |
ans = NewArray(height); |
for (i=0; i<height; i++) { |
for (i=0; i<height; i++) { |
n = Length(tower[i]); |
n = Length(tower[i]); |
ans_at_each_floor=NewArray(n); |
ans_at_each_floor=NewArray(n); |
for (j=0; j<n; j++) { |
for (j=0; j<n; j++) { |
ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1); |
ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1) |
|
+ OFFSET; |
/* Println([i,j,ans_at_each_floor[j]]); */ |
/* Println([i,j,ans_at_each_floor[j]]); */ |
} |
} |
ans[i] = ans_at_each_floor; |
ans[i] = ans_at_each_floor; |
Line 418 def SmaxOfStrategy(a) { |
|
Line 451 def SmaxOfStrategy(a) { |
|
} |
} |
|
|
|
|
def SlaScala(g) { |
def SlaScala(g,opt) { |
local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
Line 426 def SlaScala(g) { |
|
Line 459 def SlaScala(g) { |
|
reductionTable_tmp; |
reductionTable_tmp; |
/* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g,opt); |
|
Print("rf="); sm1_pmat(rf); |
redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
tower = rf[1]; |
tower = rf[1]; |
|
|
|
Println("Generating reduction table which gives an order of reduction."); |
|
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
|
Print("tower"); Println(tower); |
reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
|
Print("reductionTable="); sm1_pmat(reductionTable); |
|
|
skel = rf[2]; |
skel = rf[2]; |
redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
Line 451 def SlaScala(g) { |
|
Line 491 def SlaScala(g) { |
|
Println([level,i]); |
Println([level,i]); |
reductionTable_tmp[i] = -200000; |
reductionTable_tmp[i] = -200000; |
if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
Print("Processing "); Print([level,i]); |
Print("Processing [level,i]= "); Print([level,i]); |
Print(" Strategy = "); Println(strategy); |
Print(" Strategy = "); Println(strategy); |
if (level == 0) { |
if (level == 0) { |
if (IsNull(redundantTable[level,i])) { |
if (IsNull(redundantTable[level,i])) { |
Line 519 def SlaScala(g) { |
|
Line 559 def SlaScala(g) { |
|
bases = Sbases_to_vec(bases,bettiTable[i]); |
bases = Sbases_to_vec(bases,bettiTable[i]); |
freeResV[i] = bases; |
freeResV[i] = bases; |
} |
} |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]); |
} |
} |
|
|
def SthereIs(reductionTable_tmp,strategy) { |
def SthereIs(reductionTable_tmp,strategy) { |
Line 559 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
Line 599 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
} |
} |
} |
} |
} |
} |
|
Print("reductionTable_tmp="); |
Println(reductionTable_tmp); |
Println(reductionTable_tmp); |
|
Println("See also reductionTable, strategy, level,i"); |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
} |
} |
|
|
Line 643 def MonomialPart(f) { |
|
Line 685 def MonomialPart(f) { |
|
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
} |
} |
|
|
|
/* WARNING: |
|
When you use SwhereInTower, you have to change gbList |
|
as below. Ofcourse, you should restrore the gbList |
|
SsetTower(StowerOf(tower,level)); |
|
pos = SwhereInTower(syzHead,tower[level]); |
|
*/ |
def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
local i,n,p,q; |
local i,n,p,q; |
if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
Line 679 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 727 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
|
|
tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
SsetTower(tower2); |
SsetTower(tower2); |
|
Println(["level=",level]); |
|
Println(["tower2=",tower2]); |
/** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
|
|
gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
Line 712 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 762 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
t_syz[i] = si; |
t_syz[i] = si; |
t_syz[j] = sj; |
t_syz[j] = sj; |
|
|
|
SsetTower(StowerOf(tower,level)); |
pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
|
|
|
SsetTower(StowerOf(tower,level-1)); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
/* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
Line 825 def Sbases_to_vec(bases,size) { |
|
Line 879 def Sbases_to_vec(bases,size) { |
|
return(newbases); |
return(newbases); |
} |
} |
|
|
def Sminimal(g) { |
HelpAdd(["Sminimal", |
|
["It constructs the V-minimal free resolution by LaScala's algorithm", |
|
"option: \"homogenized\" (no automatic homogenization ", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal(v);", |
|
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" b = ReParse(a[0]); sm1_pmat(b); ", |
|
" IsExact_h(b,[x,y]):", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
def Sminimal(g,opt) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes; |
r = SlaScala(g); |
if (Length(Arglist) < 2) { |
|
opt = null; |
|
} |
|
ScheckIfSchreyer("Sminimal:0"); |
|
r = SlaScala(g,opt); |
/* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
|
ScheckIfSchreyer("Sminimal:1"); |
freeRes = r[0]; |
freeRes = r[0]; |
redundantTable = r[1]; |
redundantTable = r[1]; |
reducer = r[2]; |
reducer = r[2]; |
Line 886 def Sminimal(g) { |
|
Line 959 def Sminimal(g) { |
|
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
return([SpruneZeroRow(tminRes), tminRes, |
|
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
|
/* r[5] is the skelton */ |
} |
} |
|
|
|
|
Line 1021 def Sannfs(f,v) { |
|
Line 1096 def Sannfs(f,v) { |
|
def Sannfs2(f) { |
def Sannfs2(f) { |
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
pp = Map(p[0],"Spoly"); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
return(Sminimal(pp)); |
pp = Map(p,"Spoly"); |
|
return(Sminimal(pp)); |
} |
} |
|
|
|
HelpAdd(["Sannfs2", |
|
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
|
"See also Sminimal, Sannfs3.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:", |
|
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:" |
|
]]); |
|
/* Some samples. |
|
The betti numbers of most examples are 2,1. (0-th and 1-th). |
|
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
|
a=Sannfs2("x^3-y^2-x"); |
|
a=Sannfs2("x*y*(x-y)"); |
|
*/ |
|
|
|
|
def Sannfs3(f) { |
def Sannfs3(f) { |
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
pp = Map(p[0],"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal(pp)); |
return(Sminimal(pp)); |
} |
} |
|
|
/* |
HelpAdd(["Sannfs3", |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
a=Sannfs2("x^3-y^2-x"); : it causes an error. It should be fixed. |
"See also Sminimal, Sannfs2.", |
a=Sannfs2("x*y*(x-y)"); : it causes an error. It should be fixed. |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]: b[2]*b[1]:"]]); |
|
|
*/ |
|
|
|
|
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
|
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
|
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
|
contains 1. |
|
*/ |
|
|
|
def CopyArray(m) { |
|
local ans,i,n; |
|
if (IsArray(m)) { |
|
n = Length(m); |
|
ans = NewArray(n); |
|
for (i=0; i<n; i++) { |
|
ans[i] = CopyArray(m[i]); |
|
} |
|
return(ans); |
|
}else{ |
|
return(m); |
|
} |
|
} |
|
HelpAdd(["CopyArray", |
|
["It duplicates the argument array recursively.", |
|
"Example: m=[1,[2,3]];", |
|
" a=CopyArray(m); a[1] = \"Hello\";", |
|
" Println(m); Println(a);"]]); |
|
|
|
def IsZeroVector(m) { |
|
local n,i; |
|
n = Length(m); |
|
for (i=0; i<n; i++) { |
|
if (!IsZero(m[i])) { |
|
return(false); |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def SpruneZeroRow(res) { |
|
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
|
|
|
minRes = CopyArray(res); |
|
n = Length(minRes); |
|
for (i=0; i<n; i++) { |
|
base = minRes[i]; |
|
m = Length(base); |
|
if (i != n-1) { |
|
base2 = minRes[i+1]; |
|
base2 = Transpose(base2); |
|
} |
|
newbase = [ ]; |
|
newbase2 = [ ]; |
|
for (j=0; j<m; j++) { |
|
if (!IsZeroVector(base[j])) { |
|
newbase = Append(newbase,base[j]); |
|
if (i != n-1) { |
|
newbase2 = Append(newbase2,base2[j]); |
|
} |
|
} |
|
} |
|
minRes[i] = newbase; |
|
if (i != n-1) { |
|
if (newbase2 == [ ]) { |
|
minRes[i+1] = [ ]; |
|
}else{ |
|
minRes[i+1] = Transpose(newbase2); |
|
} |
|
} |
|
} |
|
|
|
newMinRes = [ ]; |
|
n = Length(minRes); |
|
i = 0; |
|
while (i < n ) { |
|
base = minRes[i]; |
|
if (base == [ ]) { |
|
i = n; /* break; */ |
|
}else{ |
|
newMinRes = Append(newMinRes,base); |
|
} |
|
i++; |
|
} |
|
return(newMinRes); |
|
} |
|
|
|
def testAnnfs2(f) { |
|
local a,i,n; |
|
a = Sannfs2(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
def testAnnfs3(f) { |
|
local a,i,n; |
|
a = Sannfs3(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
|
|
def ToString_array(p) { |
|
local ans; |
|
if (IsArray(p)) { |
|
ans = Map(p,"ToString_array"); |
|
}else{ |
|
ans = ToString(p); |
|
} |
|
return(ans); |
|
} |
|
|
|
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
|
|
|
def sm1_res_div(I,J,V) { |
|
I = ToString_array(I); |
|
J = ToString_array(J); |
|
V = ToString_array(V); |
|
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
|
} |
|
|
|
/* It has not yet been working */ |
|
def sm1_res_kernel_image(m,n,v) { |
|
m = ToString_array(m); |
|
n = ToString_array(n); |
|
v = ToString_array(v); |
|
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
|
} |
|
def Skernel(m,v) { |
|
m = ToString_array(m); |
|
v = ToString_array(v); |
|
sm1(" [ m v ] syz /FunctionValue set "); |
|
} |
|
|
|
|
|
def sm1_gb(f,v) { |
|
f =ToString_array(f); |
|
v = ToString_array(v); |
|
sm1(" [f v] gb /FunctionValue set "); |
|
} |
|
|
|
|
|
def SisComplex(a) { |
|
local n,i,j,k,b,p,q; |
|
n = Length(a); |
|
for (i=0; i<n-1; i++) { |
|
if (Length(a[i+1]) != 0) { |
|
b = a[i+1]*a[i]; |
|
p = Length(b); q = Length(b[0]); |
|
for (j=0; j<p; j++) { |
|
for (k=0; k<q; k++) { |
|
if (!IsZero(b[j,k])) { |
|
Print("Is is not complex at "); |
|
Println([i,j,k]); |
|
return(false); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def IsExact_h(c,v) { |
|
local a; |
|
v = ToString_array(v); |
|
a = [c,v]; |
|
sm1(a," isExact_h /FunctionValue set "); |
|
} |
|
HelpAdd(["IsExact_h", |
|
["IsExact_h(complex,var): bool", |
|
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
|
"cf. ReParse" |
|
]]); |
|
|
|
def ReParse(a) { |
|
local c; |
|
if (IsArray(a)) { |
|
c = Map(a,"ReParse"); |
|
}else{ |
|
sm1(a," toString . /c set"); |
|
} |
|
return(c); |
|
} |
|
HelpAdd(["ReParse", |
|
["Reparse(obj): obj", |
|
"It parses the given object in the current ring.", |
|
"Outputs from SlaScala, Sschreyer may cause a trouble in other functions,", |
|
"because it uses the Schreyer order.", |
|
"In this case, ReParse the outputs from these functions.", |
|
"cf. IsExaxt_h" |
|
]]); |
|
|
|
def ScheckIfSchreyer(s) { |
|
local ss; |
|
sm1(" (report) (grade) switch_function /ss set "); |
|
if (ss != "module1v") { |
|
Print("ScheckIfSchreyer: from "); Println(s); |
|
Error("grade is not module1v"); |
|
} |
|
/* |
|
sm1(" (report) (mmLarger) switch_function /ss set "); |
|
if (ss != "tower") { |
|
Print("ScheckIfSchreyer: from "); Println(s); |
|
Error("mmLarger is not tower"); |
|
} |
|
*/ |
|
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
|
if (ss != 1) { |
|
Print("ScheckIfSchreyer: from "); Println(s); |
|
Error("Schreyer order is not set."); |
|
} |
|
/* More check will be necessary. */ |
|
return(true); |
|
} |
|
|