| version 1.16, 2000/06/15 07:38:36 |
version 1.18, 2000/07/30 02:26:25 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.15 2000/06/14 07:44:05 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.17 2000/07/26 12:56:36 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
|
|
| ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
| */ |
*/ |
| #define OFFSET 0 |
#define OFFSET 0 |
| #define TOTAL_STRATEGY 1 |
|
| /* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| Line 367 def Sdegree(f,tower,level) { |
|
| Line 366 def Sdegree(f,tower,level) { |
|
| f = Init(f); |
f = Init(f); |
| if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
| i = Degree(f,es); |
i = Degree(f,es); |
| #ifdef TOTAL_STRATEGY |
|
| return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
| #endif |
|
| /* Strategy must be compatible with ordering. */ |
|
| /* Weight vector must be non-negative, too. */ |
|
| /* See Sdegree, SgenerateTable, reductionTable. */ |
|
| wd = Sord_w(f,ww); |
|
| return(wd+Sdegree(tower[level-2,i],tower,level-1)); |
|
| |
|
| } |
} |
| |
|
| Line 567 def SlaScala(g,opt) { |
|
| Line 559 def SlaScala(g,opt) { |
|
| bases = Sbases_to_vec(bases,bettiTable[i]); |
bases = Sbases_to_vec(bases,bettiTable[i]); |
| freeResV[i] = bases; |
freeResV[i] = bases; |
| } |
} |
| return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]); |
| } |
} |
| |
|
| def SthereIs(reductionTable_tmp,strategy) { |
def SthereIs(reductionTable_tmp,strategy) { |
| Line 888 def Sbases_to_vec(bases,size) { |
|
| Line 880 def Sbases_to_vec(bases,size) { |
|
| } |
} |
| |
|
| HelpAdd(["Sminimal", |
HelpAdd(["Sminimal", |
| ["It constructs the V-minimal free resolution by LaScala-Stillman's algorithm", |
["It constructs the V-minimal free resolution by LaScala's algorithm", |
| "option: \"homogenized\" (no automatic homogenization ", |
"option: \"homogenized\" (no automatic homogenization ", |
| "Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| " v=[[2*x*Dx + 3*y*Dy+6, 0],", |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| Line 969 def Sminimal(g,opt) { |
|
| Line 961 def Sminimal(g,opt) { |
|
| } |
} |
| tminRes = Stetris(minRes,redundantTable); |
tminRes = Stetris(minRes,redundantTable); |
| return([SpruneZeroRow(tminRes), tminRes, |
return([SpruneZeroRow(tminRes), tminRes, |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| |
/* r[5] is the skelton */ |
| } |
} |
| |
|
| |
|
| Line 1104 def Sannfs2(f) { |
|
| Line 1097 def Sannfs2(f) { |
|
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
| sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| /* |
|
| Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
| ["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
|
| /* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
| |
|
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal_v(pp)); |
return(Sminimal(pp)); |
| /* return(Sminimal(pp)); */ |
|
| } |
} |
| |
|
| HelpAdd(["Sannfs2", |
HelpAdd(["Sannfs2", |
| ["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| "of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
| "See also Sminimal_v, Sannfs3.", |
"See also Sminimal, Sannfs3.", |
| "Example: a=Sannfs2(\"x^3-y^2\");", |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| " b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
| " b[1]*b[0]:", |
" b[1]*b[0]:", |
| Line 1126 HelpAdd(["Sannfs2", |
|
| Line 1113 HelpAdd(["Sannfs2", |
|
| " b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
| " b[1]*b[0]:" |
" b[1]*b[0]:" |
| ]]); |
]]); |
| |
/* Some samples. |
| |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| |
a=Sannfs2("x^3-y^2-x"); |
| |
a=Sannfs2("x*y*(x-y)"); |
| |
*/ |
| |
|
| /* Do not forget to turn on TOTAL_STRATEGY */ |
|
| def Sannfs2_laScala(f) { |
|
| local p,pp; |
|
| p = Sannfs(f,"x,y"); |
|
| /* Do not make laplace transform. |
|
| sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
| p = [p]; |
|
| */ |
|
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
| pp = Map(p[0],"Spoly"); |
|
| return(Sminimal(pp)); |
|
| } |
|
| |
|
| def Sannfs2_laScala2(f) { |
|
| local p,pp; |
|
| p = Sannfs(f,"x,y"); |
|
| sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
| p = [p]; |
|
| Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
| ["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
| pp = Map(p[0],"Spoly"); |
|
| return(Sminimal(pp)); |
|
| } |
|
| |
|
| def Sannfs3(f) { |
def Sannfs3(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
| sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
| Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal_v(pp)); |
return(Sminimal(pp)); |
| } |
} |
| |
|
| HelpAdd(["Sannfs3", |
HelpAdd(["Sannfs3", |
| ["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| "of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
| "See also Sminimal_v, Sannfs2.", |
"See also Sminimal, Sannfs2.", |
| "Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
| " b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
| " b[1]*b[0]: b[2]*b[1]:"]]); |
" b[1]*b[0]: b[2]*b[1]:"]]); |
| |
|
| /* |
|
| The betti numbers of most examples are 2,1. (0-th and 1-th). |
|
| a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
|
| a=Sannfs2("x^3-y^2-x"); : it causes an error. It should be fixed. |
|
| a=Sannfs2("x*y*(x-y)"); : it causes an error. It should be fixed. |
|
| |
|
| */ |
|
| |
|
| def Sannfs3_laScala2(f) { |
|
| local p,pp; |
|
| p = Sannfs(f,"x,y,z"); |
|
| sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
| Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1], |
|
| ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
|
| pp = Map(p,"Spoly"); |
|
| return(Sminimal(pp)); |
|
| } |
|
| |
|
| |
|
| /* The below does not use LaScala-Stillman's algorithm. */ |
|
| def Sschreyer(g) { |
|
| local rf, tower, reductionTable, skel, redundantTable, bases, |
|
| strategy, maxOfStrategy, height, level, n, i, |
|
| freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
|
| redundantTable_ordinary, redundant_seq_ordinary, |
|
| reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase; |
|
| /* extern WeightOfSweyl; */ |
|
| ww = WeightOfSweyl; |
|
| Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
|
| rf = SresolutionFrameWithTower(g); |
|
| redundant_seq = 1; redundant_seq_ordinary = 1; |
|
| tower = rf[1]; |
|
| Println("Generating reduction table which gives an order of reduction."); |
|
| Println("But, you are in Sschreyer...., you may not use LaScala-Stillman"); |
|
| Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
|
| Print("tower"); Println(tower); |
|
| reductionTable = SgenerateTable(tower); |
|
| skel = rf[2]; |
|
| redundantTable = SnewArrayOfFormat(rf[1]); |
|
| redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
|
| reducer = SnewArrayOfFormat(rf[1]); |
|
| freeRes = SnewArrayOfFormat(rf[1]); |
|
| bettiTable = SsetBettiTable(rf[1],g); |
|
| |
|
| height = Length(reductionTable); |
|
| for (level = 0; level < height; level++) { |
|
| n = Length(reductionTable[level]); |
|
| for (i=0; i<n; i++) { |
|
| Println([level,i]); |
|
| Print("Processing "); Print([level,i]); |
|
| if (level == 0) { |
|
| if (IsNull(redundantTable[level,i])) { |
|
| bases = freeRes[level]; |
|
| /* Println(["At floor : GB=",i,bases,tower[0,i]]); */ |
|
| pos = SwhereInGB(tower[0,i],rf[3,0]); |
|
| bases[i] = rf[3,0,pos]; |
|
| /* redundantTable[level,i] = 0; |
|
| redundantTable_ordinary[level,i] = 0; */ |
|
| freeRes[level] = bases; |
|
| /* Println(["GB=",i,bases,tower[0,i]]); */ |
|
| } |
|
| }else{ /* level >= 1 */ |
|
| if (IsNull(redundantTable[level,i])) { |
|
| bases = freeRes[level]; |
|
| f = SpairAndReduction2(skel,level,i,freeRes,tower, |
|
| ww,redundantTable); |
|
| if (f[0] != Poly("0")) { |
|
| place = f[3]; |
|
| /* (level-1, place) is the place for f[0], |
|
| which is a newly obtained GB. */ |
|
| #ifdef ORDINARY |
|
| redundantTable[level-1,place] = redundant_seq; |
|
| redundant_seq++; |
|
| #else |
|
| if (f[4] > f[5]) { |
|
| /* Zero in the gr-module */ |
|
| Print("v-degree of [org,remainder] = "); |
|
| Println([f[4],f[5]]); |
|
| Print("[level,i] = "); Println([level,i]); |
|
| redundantTable[level-1,place] = 0; |
|
| }else{ |
|
| redundantTable[level-1,place] = redundant_seq; |
|
| redundant_seq++; |
|
| } |
|
| #endif |
|
| redundantTable_ordinary[level-1,place] |
|
| =redundant_seq_ordinary; |
|
| redundant_seq_ordinary++; |
|
| bases[i] = SunitOfFormat(place,f[1])-f[1]; /* syzygy */ |
|
| /* redundantTable[level,i] = 0; |
|
| redundantTable_ordinary[level,i] = 0; */ |
|
| /* i must be equal to f[2], I think. Double check. */ |
|
| |
|
| /* Correction Of Constant */ |
|
| /* Correction of syzygy */ |
|
| c2 = f[6]; /* or -f[6]? Double check. */ |
|
| Print("c2="); Println(c2); |
|
| nn = Length(bases); |
|
| for (ii=0; ii<nn;ii++) { |
|
| if ((ii != i) && (! IsNull(bases[ii]))) { |
|
| m = Length(bases[ii]); |
|
| for (jj=0; jj<m; jj++) { |
|
| if (jj != place) { |
|
| bases[ii,jj] = bases[ii,jj]*c2; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| |
|
| Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
| freeRes[level] = bases; |
|
| Print("New freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
| |
|
| /* Update the freeRes[level-1] */ |
|
| Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
| bases = freeRes[level-1]; |
|
| bases[place] = f[0]; |
|
| freeRes[level-1] = bases; |
|
| Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
| |
|
| reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
|
| /* This reducer is different from that of SlaScala(). */ |
|
| |
|
| reducerBasis = reducer[level-1]; |
|
| nn = Length(reducerBasis); |
|
| for (ii=0; ii<nn;ii++) { |
|
| if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
|
| m = Length(reducerBasis[ii]); |
|
| for (jj=0; jj<m; jj++) { |
|
| if (jj != place) { |
|
| reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| reducer[level-1] = reducerBasis; |
|
| |
|
| }else{ |
|
| /* redundantTable[level,i] = 0; */ |
|
| bases = freeRes[level]; |
|
| bases[i] = f[1]; /* Put the syzygy. */ |
|
| freeRes[level] = bases; |
|
| } |
|
| } /* end of level >= 1 */ |
|
| } |
|
| } /* i loop */ |
|
| |
|
| /* Triangulate reducer */ |
|
| if (level >= 1) { |
|
| Println(" "); |
|
| Print("Triangulating reducer at level "); Println(level-1); |
|
| Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
|
| reducerBase = reducer[level-1]; |
|
| Print("reducerBase="); Println(reducerBase); |
|
| Println("Compare freeRes[level] and reducerBase (put -1)"); |
|
| m = Length(reducerBase); |
|
| for (ii=m-1; ii>=0; ii--) { |
|
| if (!IsNull(reducerBase[ii])) { |
|
| for (jj=ii-1; jj>=0; jj--) { |
|
| if (!IsNull(reducerBase[jj])) { |
|
| if (!IsZero(reducerBase[jj,ii])) { |
|
| /* reducerBase[ii,ii] should be always constant. */ |
|
| reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| } |
|
| Println("New reducer"); |
|
| sm1_pmat(reducerBase); |
|
| reducer[level-1] = reducerBase; |
|
| } |
|
| |
|
| } /* level loop */ |
|
| n = Length(freeRes); |
|
| freeResV = SnewArrayOfFormat(freeRes); |
|
| for (i=0; i<n; i++) { |
|
| bases = freeRes[i]; |
|
| bases = Sbases_to_vec(bases,bettiTable[i]); |
|
| freeResV[i] = bases; |
|
| } |
|
| |
|
| /* Mark the non-redundant elements. */ |
|
| for (i=0; i<n; i++) { |
|
| m = Length(redundantTable[i]); |
|
| for (jj=0; jj<m; jj++) { |
|
| if (IsNull(redundantTable[i,jj])) { |
|
| redundantTable[i,jj] = 0; |
|
| } |
|
| } |
|
| } |
|
| |
|
| |
|
| return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
|
| } |
|
| |
|
| def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) { |
|
| local i, j, myindex, p, bases, tower2, gi, gj, |
|
| si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
|
| vdeg,vdeg_reduced,n,c2; |
|
| Println("SpairAndReduction2 : -------------------------"); |
|
| |
|
| if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
|
| p = skel[level,ii]; |
|
| myindex = p[0]; |
|
| i = myindex[0]; j = myindex[1]; |
|
| bases = freeRes[level-1]; |
|
| Println(["p and bases ",p,bases]); |
|
| if (IsNull(bases[i]) || IsNull(bases[j])) { |
|
| Println([level,i,j,bases[i],bases[j]]); |
|
| Error("level, i, j : bases[i], bases[j] must not be NULL."); |
|
| } |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
|
| SsetTower(tower2); |
|
| Println(["level=",level]); |
|
| Println(["tower2=",tower2]); |
|
| /** sm1(" show_ring "); */ |
|
| |
|
| gi = Stoes_vec(bases[i]); |
|
| gj = Stoes_vec(bases[j]); |
|
| |
|
| ssp = Sspolynomial(gi,gj); |
|
| si = ssp[0,0]; |
|
| sj = ssp[0,1]; |
|
| syzHead = si*es^i; |
|
| /* This will be the head term, I think. But, double check. */ |
|
| Println([si*es^i,sj*es^j]); |
|
| |
|
| Print("[gi, gj] = "); Println([gi,gj]); |
|
| sm1(" [(Homogenize)] system_variable message "); |
|
| Print("Reduce the element "); Println(si*gi+sj*gj); |
|
| Print("by "); Println(bases); |
|
| |
|
| tmp = Sreduction(si*gi+sj*gj, bases); |
|
| |
|
| Print("result is "); Println(tmp); |
|
| if (!IsZero(tmp[0])) { |
|
| Print("Error: base = "); |
|
| Println(Map(bases,"Stoes_vec")); |
|
| Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring."); |
|
| } |
|
| t_syz = tmp[2]; |
|
| si = si*tmp[1]+t_syz[i]; |
|
| sj = sj*tmp[1]+t_syz[j]; |
|
| t_syz[i] = si; |
|
| t_syz[j] = sj; |
|
| |
|
| c2 = null; |
|
| /* tmp[0] must be zero */ |
|
| n = Length(t_syz); |
|
| for (i=0; i<n; i++) { |
|
| if (IsConstant(t_syz[i])){ |
|
| if (!IsZero(t_syz[i])) { |
|
| if (IsNull(redundantTable[level-1,i])) { |
|
| /* i must equal to pos2 below. */ |
|
| c2 = -t_syz[i]; |
|
| tmp[0] = c2*Stoes_vec(freeRes[level-1,i]); |
|
| t_syz[i] = 0; |
|
| /* tmp[0] = t_syz . g */ |
|
| /* break; does not work. Use */ |
|
| i = n; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| |
|
| /* This is essential part for V-minimal resolution. */ |
|
| /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
|
| vdeg = SvDegree(si*gi,tower,level-1,ww); |
|
| vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
|
| Print("vdegree of the original = "); Println(vdeg); |
|
| Print("vdegree of the remainder = "); Println(vdeg_reduced); |
|
| |
|
| if (!IsNull(vdeg_reduced)) { |
|
| if (vdeg_reduced < vdeg) { |
|
| Println("--- Special in V-minimal!"); |
|
| Println(tmp[0]); |
|
| Println("syzygy="); sm1_pmat(t_syz); |
|
| Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]); |
|
| } |
|
| } |
|
| |
|
| SsetTower(StowerOf(tower,level)); |
|
| pos = SwhereInTower(syzHead,tower[level]); |
|
| |
|
| SsetTower(StowerOf(tower,level-1)); |
|
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
|
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
|
| /* pos is the place to put syzygy at level. */ |
|
| /* pos2 is the place to put a new GB at level-1. */ |
|
| Println(ans); |
|
| Println("--- end of SpairAndReduction2 "); |
|
| return(ans); |
|
| } |
|
| |
|
| HelpAdd(["Sminimal_v", |
|
| ["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
| "step by step.", |
|
| "This code still contains bugs. It sometimes outputs wrong answer.", |
|
| "Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
| " v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
| " [3*x^2*Dy + 2*y*Dx, 0],", |
|
| " [0, x^2+y^2],", |
|
| " [0, x*y]];", |
|
| " a=Sminimal_v(v);", |
|
| " sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
| "Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
| |
|
| /* This code still contains bugs. It sometimes outputs wrong answer. */ |
|
| /* See test12() in minimal-test.k. */ |
|
| /* There may be remaining 1, too */ |
|
| def Sminimal_v(g) { |
|
| local r, freeRes, redundantTable, reducer, maxLevel, |
|
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
|
| betti_levelplus, newbases, i, j,qq,tminRes; |
|
| r = Sschreyer(g); |
|
| sm1_pmat(r); |
|
| Debug_Sminimal_v = r; |
|
| Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v"); |
|
| /* Should I turn off the tower?? */ |
|
| freeRes = r[0]; |
|
| redundantTable = r[1]; |
|
| reducer = r[2]; |
|
| minRes = SnewArrayOfFormat(freeRes); |
|
| seq = 0; |
|
| maxSeq = SgetMaxSeq(redundantTable); |
|
| maxLevel = Length(freeRes); |
|
| for (level = 0; level < maxLevel; level++) { |
|
| minRes[level] = freeRes[level]; |
|
| } |
|
| for (level = 0; level < maxLevel; level++) { |
|
| betti = Length(freeRes[level]); |
|
| for (q = betti-1; q>=0; q--) { |
|
| if (redundantTable[level,q] > 0) { |
|
| Print("[seq,level,q]="); Println([seq,level,q]); |
|
| if (level < maxLevel-1) { |
|
| bases = freeRes[level+1]; |
|
| dr = reducer[level,q]; |
|
| /* dr[q] = -1; We do not need this in our reducer format. */ |
|
| /* dr[q] should be a non-zero constant. */ |
|
| newbases = SnewArrayOfFormat(bases); |
|
| betti_levelplus = Length(bases); |
|
| /* |
|
| bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
|
| */ |
|
| for (i=0; i<betti_levelplus; i++) { |
|
| newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
|
| } |
|
| Println(["level, q =", level,q]); |
|
| Println("bases="); sm1_pmat(bases); |
|
| Println("dr="); sm1_pmat(dr); |
|
| Println("newbases="); sm1_pmat(newbases); |
|
| minRes[level+1] = newbases; |
|
| freeRes = minRes; |
|
| #ifdef DEBUG |
|
| for (qq=q; qq<betti; qq++) { |
|
| for (i=0; i<betti_levelplus; i++) { |
|
| if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
|
| Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
|
| Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
|
| Error("Stop in Sminimal for debugging."); |
|
| } |
|
| } |
|
| } |
|
| #endif |
|
| } |
|
| } |
|
| } |
|
| } |
|
| tminRes = Stetris(minRes,redundantTable); |
|
| return([SpruneZeroRow(tminRes), tminRes, |
|
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
|
| /* r[4] is the redundantTable_ordinary */ |
|
| /* r[0] is the freeResolution */ |
|
| } |
|
| |
|
| /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
| /* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
| x y z (x+y+z-1) seems to be interesting, because the first syzygy |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
| Line 1687 def Skernel(m,v) { |
|
| Line 1282 def Skernel(m,v) { |
|
| sm1(" [ m v ] syz /FunctionValue set "); |
sm1(" [ m v ] syz /FunctionValue set "); |
| } |
} |
| |
|
| def test3() { |
|
| local a1,a2,b1,b2; |
|
| a1 = Sannfs3("x^3-y^2*z^2"); |
|
| a1 = a1[0]; |
|
| a2 = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
| a2 = a2[0]; |
|
| b1 = a1[1]; |
|
| b2 = a2[1]; |
|
| sm1_pmat(b2); |
|
| Println(" OVER "); |
|
| sm1_pmat(b1); |
|
| return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]); |
|
| } |
|
| |
|
| def test4() { |
|
| local a,b; |
|
| a = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
| b = a[0]; |
|
| sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z])); |
|
| sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z])); |
|
| return(a); |
|
| } |
|
| |
|
| def sm1_gb(f,v) { |
def sm1_gb(f,v) { |
| f =ToString_array(f); |
f =ToString_array(f); |