version 1.8, 2000/05/06 10:45:43 |
version 1.14, 2000/06/09 08:04:54 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.7 2000/05/06 10:35:33 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.13 2000/06/08 08:37:53 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
|
|
ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
*/ |
*/ |
#define OFFSET 0 |
#define OFFSET 0 |
#define TOTAL_STRATEGY |
#define TOTAL_STRATEGY 1 |
/* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
/* Test sequences. |
/* Test sequences. |
Use load["minimal.k"];; |
Use load["minimal.k"];; |
Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
[ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable |
[(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable |
] pop popEnv "); |
] pop popEnv "); |
|
/* sm1("(hoge) message show_ring "); */ |
} |
} |
|
|
def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
Line 291 def Sres0FrameWithSkelton(g) { |
|
Line 292 def Sres0FrameWithSkelton(g) { |
|
|
|
|
|
def StotalDegree(f) { |
def StotalDegree(f) { |
sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
|
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
|
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
|
return(d0); |
} |
} |
|
|
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
Line 444 def SlaScala(g) { |
|
Line 448 def SlaScala(g) { |
|
ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g); |
|
Print("rf="); sm1_pmat(rf); |
redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
tower = rf[1]; |
tower = rf[1]; |
reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
Line 661 def MonomialPart(f) { |
|
Line 666 def MonomialPart(f) { |
|
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
} |
} |
|
|
|
/* WARNING: |
|
When you use SwhereInTower, you have to change gbList |
|
as below. Ofcourse, you should restrore the gbList |
|
SsetTower(StowerOf(tower,level)); |
|
pos = SwhereInTower(syzHead,tower[level]); |
|
*/ |
def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
local i,n,p,q; |
local i,n,p,q; |
if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
Line 697 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 708 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
|
|
tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
SsetTower(tower2); |
SsetTower(tower2); |
|
Println(["level=",level]); |
|
Println(["tower2=",tower2]); |
/** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
|
|
gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
Line 730 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
Line 743 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
t_syz[i] = si; |
t_syz[i] = si; |
t_syz[j] = sj; |
t_syz[j] = sj; |
|
|
|
SsetTower(StowerOf(tower,level)); |
pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
|
|
|
SsetTower(StowerOf(tower,level-1)); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
/* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
Line 843 def Sbases_to_vec(bases,size) { |
|
Line 860 def Sbases_to_vec(bases,size) { |
|
return(newbases); |
return(newbases); |
} |
} |
|
|
|
HelpAdd(["Sminimal", |
|
["It constructs the V-minimal free resolution by LaScala-Stillman's algorithm", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal(v);", |
|
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" b = ReParse(a[0]); sm1_pmat(b); ", |
|
" IsExact_h(b,[x,y]):", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
def Sminimal(g) { |
def Sminimal(g) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes; |
r = SlaScala(g); |
r = SlaScala(g); |
/* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
freeRes = r[0]; |
freeRes = r[0]; |
Line 904 def Sminimal(g) { |
|
Line 934 def Sminimal(g) { |
|
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
|
return([SpruneZeroRow(tminRes), tminRes, |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
Line 1044 def Sannfs2(f) { |
|
Line 1075 def Sannfs2(f) { |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
/* return(Sminimal(pp)); */ |
/* return(Sminimal(pp)); */ |
} |
} |
|
|
|
HelpAdd(["Sannfs2", |
|
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
|
"See also Sminimal_v, Sannfs3.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:", |
|
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:" |
|
]]); |
|
|
/* Do not forget to turn on TOTAL_STRATEGY */ |
/* Do not forget to turn on TOTAL_STRATEGY */ |
def Sannfs2_laScala(f) { |
def Sannfs2_laScala(f) { |
local p,pp; |
local p,pp; |
Line 1063 def Sannfs2_laScala(f) { |
|
Line 1107 def Sannfs2_laScala(f) { |
|
return(Sminimal(pp)); |
return(Sminimal(pp)); |
} |
} |
|
|
|
def Sannfs2_laScala2(f) { |
|
local p,pp; |
|
p = Sannfs(f,"x,y"); |
|
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
p = [p]; |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
pp = Map(p[0],"Spoly"); |
|
return(Sminimal(pp)); |
|
} |
|
|
def Sannfs3(f) { |
def Sannfs3(f) { |
local p,pp; |
local p,pp; |
p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
Line 1072 def Sannfs3(f) { |
|
Line 1127 def Sannfs3(f) { |
|
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
} |
} |
|
|
|
HelpAdd(["Sannfs3", |
|
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
|
"See also Sminimal_v, Sannfs2.", |
|
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]: b[2]*b[1]:"]]); |
|
|
/* |
/* |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
Line 1080 def Sannfs3(f) { |
|
Line 1143 def Sannfs3(f) { |
|
|
|
*/ |
*/ |
|
|
|
def Sannfs3_laScala2(f) { |
|
local p,pp; |
|
p = Sannfs(f,"x,y,z"); |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1], |
|
["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
|
pp = Map(p,"Spoly"); |
|
return(Sminimal(pp)); |
|
} |
|
|
|
|
/* The below does not use LaScala-Stillman's algorithm. */ |
/* The below does not use LaScala-Stillman's algorithm. */ |
Line 1153 def Sschreyer(g) { |
|
Line 1225 def Sschreyer(g) { |
|
/* i must be equal to f[2], I think. Double check. */ |
/* i must be equal to f[2], I think. Double check. */ |
|
|
/* Correction Of Constant */ |
/* Correction Of Constant */ |
|
/* Correction of syzygy */ |
c2 = f[6]; /* or -f[6]? Double check. */ |
c2 = f[6]; /* or -f[6]? Double check. */ |
Print("c2="); Println(c2); |
Print("c2="); Println(c2); |
nn = Length(bases); |
nn = Length(bases); |
Line 1178 def Sschreyer(g) { |
|
Line 1251 def Sschreyer(g) { |
|
freeRes[level-1] = bases; |
freeRes[level-1] = bases; |
Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
|
reducer[level-1,place] = f[1]; |
reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
|
/* This reducer is different from that of SlaScala(). */ |
|
|
|
reducerBasis = reducer[level-1]; |
|
nn = Length(reducerBasis); |
|
for (ii=0; ii<nn;ii++) { |
|
if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
|
m = Length(reducerBasis[ii]); |
|
for (jj=0; jj<m; jj++) { |
|
if (jj != place) { |
|
reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
|
} |
|
} |
|
} |
|
} |
|
reducer[level-1] = reducerBasis; |
|
|
}else{ |
}else{ |
/* redundantTable[level,i] = 0; */ |
/* redundantTable[level,i] = 0; */ |
bases = freeRes[level]; |
bases = freeRes[level]; |
Line 1193 def Sschreyer(g) { |
|
Line 1282 def Sschreyer(g) { |
|
if (level >= 1) { |
if (level >= 1) { |
Println(" "); |
Println(" "); |
Print("Triangulating reducer at level "); Println(level-1); |
Print("Triangulating reducer at level "); Println(level-1); |
|
Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
reducerBase = reducer[level-1]; |
reducerBase = reducer[level-1]; |
Print("reducerBase="); Println(reducerBase); |
Print("reducerBase="); Println(reducerBase); |
|
Println("Compare freeRes[level] and reducerBase (put -1)"); |
m = Length(reducerBase); |
m = Length(reducerBase); |
for (ii=m-1; ii>=0; ii--) { |
for (ii=m-1; ii>=0; ii--) { |
if (!IsNull(reducerBase[ii])) { |
if (!IsNull(reducerBase[ii])) { |
for (jj=ii-1; jj>=0; jj--) { |
for (jj=ii-1; jj>=0; jj--) { |
if (!IsNull(reducerBase[jj])) { |
if (!IsNull(reducerBase[jj])) { |
if (!IsZero(reducerBase[jj,ii])) { |
if (!IsZero(reducerBase[jj,ii])) { |
reducerBase[jj] = reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
/* reducerBase[ii,ii] should be always constant. */ |
|
reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
} |
} |
} |
} |
} |
} |
Line 1254 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1346 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
|
|
tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
SsetTower(tower2); |
SsetTower(tower2); |
|
Println(["level=",level]); |
|
Println(["tower2=",tower2]); |
/** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
|
|
gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
Line 1311 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1405 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Print("vdegree of the original = "); Println(vdeg); |
Print("vdegree of the original = "); Println(vdeg); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
|
|
|
if (!IsNull(vdeg_reduced)) { |
|
if (vdeg_reduced < vdeg) { |
|
Println("--- Special in V-minimal!"); |
|
Println(tmp[0]); |
|
Println("syzygy="); sm1_pmat(t_syz); |
|
Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]); |
|
} |
|
} |
|
|
|
SsetTower(StowerOf(tower,level)); |
pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
|
|
|
SsetTower(StowerOf(tower,level-1)); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
/* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
/* pos2 is the place to put a new GB at level-1. */ |
/* pos2 is the place to put a new GB at level-1. */ |
Println(ans); |
Println(ans); |
Println(" "); |
Println("--- end of SpairAndReduction2 "); |
return(ans); |
return(ans); |
} |
} |
|
|
|
HelpAdd(["Sminimal_v", |
|
["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
"step by step.", |
|
"This code still contains bugs. It sometimes outputs wrong answer.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal_v(v);", |
|
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
/* This code still contains bugs. It sometimes outputs wrong answer. */ |
|
/* See test12() in minimal-test.k. */ |
|
/* There may be remaining 1, too */ |
def Sminimal_v(g) { |
def Sminimal_v(g) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq,tminRes; |
r = Sschreyer(g); |
r = Sschreyer(g); |
sm1_pmat(r); |
sm1_pmat(r); |
Debug_Sminimal_v = r; |
Debug_Sminimal_v = r; |
Line 1348 def Sminimal_v(g) { |
|
Line 1470 def Sminimal_v(g) { |
|
if (level < maxLevel-1) { |
if (level < maxLevel-1) { |
bases = freeRes[level+1]; |
bases = freeRes[level+1]; |
dr = reducer[level,q]; |
dr = reducer[level,q]; |
dr[q] = -1; |
/* dr[q] = -1; We do not need this in our reducer format. */ |
|
/* dr[q] should be a non-zero constant. */ |
newbases = SnewArrayOfFormat(bases); |
newbases = SnewArrayOfFormat(bases); |
betti_levelplus = Length(bases); |
betti_levelplus = Length(bases); |
/* |
/* |
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
*/ |
*/ |
for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
newbases[i] = bases[i] + bases[i,q]*dr; |
newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
} |
} |
Println(["level, q =", level,q]); |
Println(["level, q =", level,q]); |
Println("bases="); sm1_pmat(bases); |
Println("bases="); sm1_pmat(bases); |
Line 1364 def Sminimal_v(g) { |
|
Line 1487 def Sminimal_v(g) { |
|
minRes[level+1] = newbases; |
minRes[level+1] = newbases; |
freeRes = minRes; |
freeRes = minRes; |
#ifdef DEBUG |
#ifdef DEBUG |
/* Do it later. |
for (qq=q; qq<betti; qq++) { |
for (qq=0; qq<betti; qq++) { |
|
for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
if (!IsZero(newbases[i,qq])) { |
if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Error("Stop in Sminimal for debugging."); |
Error("Stop in Sminimal for debugging."); |
} |
} |
} |
} |
} |
} |
*/ |
|
#endif |
#endif |
} |
} |
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
|
return([SpruneZeroRow(tminRes), tminRes, |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
} |
} |
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
|
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
|
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
|
contains 1. |
|
*/ |
|
|
|
def CopyArray(m) { |
|
local ans,i,n; |
|
if (IsArray(m)) { |
|
n = Length(m); |
|
ans = NewArray(n); |
|
for (i=0; i<n; i++) { |
|
ans[i] = CopyArray(m[i]); |
|
} |
|
return(ans); |
|
}else{ |
|
return(m); |
|
} |
|
} |
|
HelpAdd(["CopyArray", |
|
["It duplicates the argument array recursively.", |
|
"Example: m=[1,[2,3]];", |
|
" a=CopyArray(m); a[1] = \"Hello\";", |
|
" Println(m); Println(a);"]]); |
|
|
|
def IsZeroVector(m) { |
|
local n,i; |
|
n = Length(m); |
|
for (i=0; i<n; i++) { |
|
if (!IsZero(m[i])) { |
|
return(false); |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def SpruneZeroRow(res) { |
|
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
|
|
|
minRes = CopyArray(res); |
|
n = Length(minRes); |
|
for (i=0; i<n; i++) { |
|
base = minRes[i]; |
|
m = Length(base); |
|
if (i != n-1) { |
|
base2 = minRes[i+1]; |
|
base2 = Transpose(base2); |
|
} |
|
newbase = [ ]; |
|
newbase2 = [ ]; |
|
for (j=0; j<m; j++) { |
|
if (!IsZeroVector(base[j])) { |
|
newbase = Append(newbase,base[j]); |
|
if (i != n-1) { |
|
newbase2 = Append(newbase2,base2[j]); |
|
} |
|
} |
|
} |
|
minRes[i] = newbase; |
|
if (i != n-1) { |
|
if (newbase2 == [ ]) { |
|
minRes[i+1] = [ ]; |
|
}else{ |
|
minRes[i+1] = Transpose(newbase2); |
|
} |
|
} |
|
} |
|
|
|
newMinRes = [ ]; |
|
n = Length(minRes); |
|
i = 0; |
|
while (i < n ) { |
|
base = minRes[i]; |
|
if (base == [ ]) { |
|
i = n; /* break; */ |
|
}else{ |
|
newMinRes = Append(newMinRes,base); |
|
} |
|
i++; |
|
} |
|
return(newMinRes); |
|
} |
|
|
|
def testAnnfs2(f) { |
|
local a,i,n; |
|
a = Sannfs2(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
def testAnnfs3(f) { |
|
local a,i,n; |
|
a = Sannfs3(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
|
|
def ToString_array(p) { |
|
local ans; |
|
if (IsArray(p)) { |
|
ans = Map(p,"ToString_array"); |
|
}else{ |
|
ans = ToString(p); |
|
} |
|
return(ans); |
|
} |
|
|
|
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
|
|
|
def sm1_res_div(I,J,V) { |
|
I = ToString_array(I); |
|
J = ToString_array(J); |
|
V = ToString_array(V); |
|
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
|
} |
|
|
|
/* It has not yet been working */ |
|
def sm1_res_kernel_image(m,n,v) { |
|
m = ToString_array(m); |
|
n = ToString_array(n); |
|
v = ToString_array(v); |
|
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
|
} |
|
def Skernel(m,v) { |
|
m = ToString_array(m); |
|
v = ToString_array(v); |
|
sm1(" [ m v ] syz /FunctionValue set "); |
|
} |
|
|
|
def test3() { |
|
local a1,a2,b1,b2; |
|
a1 = Sannfs3("x^3-y^2*z^2"); |
|
a1 = a1[0]; |
|
a2 = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
a2 = a2[0]; |
|
b1 = a1[1]; |
|
b2 = a2[1]; |
|
sm1_pmat(b2); |
|
Println(" OVER "); |
|
sm1_pmat(b1); |
|
return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]); |
|
} |
|
|
|
def test4() { |
|
local a,b; |
|
a = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
b = a[0]; |
|
sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z])); |
|
sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z])); |
|
return(a); |
|
} |
|
|
|
def sm1_gb(f,v) { |
|
f =ToString_array(f); |
|
v = ToString_array(v); |
|
sm1(" [f v] gb /FunctionValue set "); |
|
} |
|
|
|
|
|
def SisComplex(a) { |
|
local n,i,j,k,b,p,q; |
|
n = Length(a); |
|
for (i=0; i<n-1; i++) { |
|
if (Length(a[i+1]) != 0) { |
|
b = a[i+1]*a[i]; |
|
p = Length(b); q = Length(b[0]); |
|
for (j=0; j<p; j++) { |
|
for (k=0; k<q; k++) { |
|
if (!IsZero(b[j,k])) { |
|
Print("Is is not complex at "); |
|
Println([i,j,k]); |
|
return(false); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def IsExact_h(c,v) { |
|
local a; |
|
v = ToString_array(v); |
|
a = [c,v]; |
|
sm1(a," isExact_h /FunctionValue set "); |
|
} |
|
HelpAdd(["IsExact_h", |
|
["IsExact_h(complex,var): bool", |
|
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
|
"cf. ReParse" |
|
]]); |
|
|
|
def ReParse(a) { |
|
local c; |
|
if (IsArray(a)) { |
|
c = Map(a,"ReParse"); |
|
}else{ |
|
sm1(a," toString . /c set"); |
|
} |
|
return(c); |
|
} |
|
HelpAdd(["ReParse", |
|
["Reparse(obj): obj", |
|
"It parses the given object in the current ring.", |
|
"Outputs from SlaScala, Sschreyer may cause a trouble in other functions,", |
|
"because it uses the Schreyer order.", |
|
"In this case, ReParse the outputs from these functions.", |
|
"cf. IsExaxt_h" |
|
]]); |