| version 1.11, 2000/05/19 11:16:51 |
version 1.14, 2000/06/09 08:04:54 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.10 2000/05/07 02:10:44 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.13 2000/06/08 08:37:53 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
|
|
| ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
| */ |
*/ |
| #define OFFSET 0 |
#define OFFSET 0 |
| /* #define TOTAL_STRATEGY */ |
#define TOTAL_STRATEGY 1 |
| /* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
| Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
| [ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable |
| [(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable |
| ] pop popEnv "); |
] pop popEnv "); |
| |
/* sm1("(hoge) message show_ring "); */ |
| } |
} |
| |
|
| def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
| Line 291 def Sres0FrameWithSkelton(g) { |
|
| Line 292 def Sres0FrameWithSkelton(g) { |
|
| |
|
| |
|
| def StotalDegree(f) { |
def StotalDegree(f) { |
| sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
| |
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
| |
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
| |
return(d0); |
| } |
} |
| |
|
| /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
| Line 444 def SlaScala(g) { |
|
| Line 448 def SlaScala(g) { |
|
| ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
| Print("WeightOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
| rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g); |
| |
Print("rf="); sm1_pmat(rf); |
| redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| tower = rf[1]; |
tower = rf[1]; |
| reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
| Line 661 def MonomialPart(f) { |
|
| Line 666 def MonomialPart(f) { |
|
| sm1(" [(lmonom) f] gbext /FunctionValue set "); |
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
| } |
} |
| |
|
| |
/* WARNING: |
| |
When you use SwhereInTower, you have to change gbList |
| |
as below. Ofcourse, you should restrore the gbList |
| |
SsetTower(StowerOf(tower,level)); |
| |
pos = SwhereInTower(syzHead,tower[level]); |
| |
*/ |
| def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
| local i,n,p,q; |
local i,n,p,q; |
| if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
| Line 697 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 708 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
| SsetTower(tower2); |
SsetTower(tower2); |
| |
Println(["level=",level]); |
| |
Println(["tower2=",tower2]); |
| /** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
| |
|
| gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
| Line 730 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 743 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
| t_syz[i] = si; |
t_syz[i] = si; |
| t_syz[j] = sj; |
t_syz[j] = sj; |
| |
|
| |
SsetTower(StowerOf(tower,level)); |
| pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
| |
|
| |
SsetTower(StowerOf(tower,level-1)); |
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
| /* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
| Line 843 def Sbases_to_vec(bases,size) { |
|
| Line 860 def Sbases_to_vec(bases,size) { |
|
| return(newbases); |
return(newbases); |
| } |
} |
| |
|
| |
HelpAdd(["Sminimal", |
| |
["It constructs the V-minimal free resolution by LaScala-Stillman's algorithm", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal(v);", |
| |
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" b = ReParse(a[0]); sm1_pmat(b); ", |
| |
" IsExact_h(b,[x,y]):", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| def Sminimal(g) { |
def Sminimal(g) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes; |
| r = SlaScala(g); |
r = SlaScala(g); |
| /* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
| freeRes = r[0]; |
freeRes = r[0]; |
| Line 904 def Sminimal(g) { |
|
| Line 934 def Sminimal(g) { |
|
| } |
} |
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
| |
return([SpruneZeroRow(tminRes), tminRes, |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| Line 1315 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| Line 1346 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
| SsetTower(tower2); |
SsetTower(tower2); |
| |
Println(["level=",level]); |
| |
Println(["tower2=",tower2]); |
| /** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
| |
|
| gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
| Line 1381 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| Line 1414 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| } |
} |
| } |
} |
| |
|
| |
SsetTower(StowerOf(tower,level)); |
| pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
| |
|
| |
SsetTower(StowerOf(tower,level-1)); |
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
| /* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
| /* pos2 is the place to put a new GB at level-1. */ |
/* pos2 is the place to put a new GB at level-1. */ |
| Println(ans); |
Println(ans); |
| Println(" "); |
Println("--- end of SpairAndReduction2 "); |
| return(ans); |
return(ans); |
| } |
} |
| |
|
| HelpAdd(["Sminimal_v", |
HelpAdd(["Sminimal_v", |
| ["It constructs the V-minimal free resolution from the Schreyer resolution", |
["It constructs the V-minimal free resolution from the Schreyer resolution", |
| "step by step.", |
"step by step.", |
| |
"This code still contains bugs. It sometimes outputs wrong answer.", |
| "Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| " v=[[2*x*Dx + 3*y*Dy+6, 0],", |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| " [3*x^2*Dy + 2*y*Dx, 0],", |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| Line 1404 HelpAdd(["Sminimal_v", |
|
| Line 1440 HelpAdd(["Sminimal_v", |
|
| " sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
| "Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| |
/* This code still contains bugs. It sometimes outputs wrong answer. */ |
| |
/* See test12() in minimal-test.k. */ |
| |
/* There may be remaining 1, too */ |
| def Sminimal_v(g) { |
def Sminimal_v(g) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| Line 1641 def sm1_gb(f,v) { |
|
| Line 1679 def sm1_gb(f,v) { |
|
| sm1(" [f v] gb /FunctionValue set "); |
sm1(" [f v] gb /FunctionValue set "); |
| } |
} |
| |
|
| def test5() { |
|
| local a,b,c,cc,v; |
def SisComplex(a) { |
| a = Sannfs3_laScala2("x^3-y^2*z^2"); |
local n,i,j,k,b,p,q; |
| b = a[0]; |
n = Length(a); |
| v = [x,y,z]; |
for (i=0; i<n-1; i++) { |
| c = Skernel(b[0],v); |
if (Length(a[i+1]) != 0) { |
| c = c[0]; |
b = a[i+1]*a[i]; |
| sm1_pmat([c,b[1],v]); |
p = Length(b); q = Length(b[0]); |
| Println("-----------------------------------"); |
for (j=0; j<p; j++) { |
| cc = sm1_res_div(c,b[1],v); |
for (k=0; k<q; k++) { |
| sm1_pmat(sm1_gb(cc,v)); |
if (!IsZero(b[j,k])) { |
| c = Skernel(b[1],v); |
Print("Is is not complex at "); |
| c = c[0]; |
Println([i,j,k]); |
| cc = sm1_res_div(c,b[2],v); |
return(false); |
| sm1_pmat(sm1_gb(cc,v)); |
} |
| return(a); |
} |
| |
} |
| |
} |
| |
} |
| |
return(true); |
| } |
} |
| def test6() { |
|
| local a,b,c,cc,v; |
def IsExact_h(c,v) { |
| a = Sannfs3("x^3-y^2*z^2"); |
local a; |
| b = a[0]; |
v = ToString_array(v); |
| v = [x,y,z]; |
a = [c,v]; |
| c = Skernel(b[0],v); |
sm1(a," isExact_h /FunctionValue set "); |
| c = c[0]; |
|
| sm1_pmat([c,b[1],v]); |
|
| Println("-------ker = im for minimal ?---------------------"); |
|
| cc = sm1_res_div(c,b[1],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| c = Skernel(b[1],v); |
|
| c = c[0]; |
|
| cc = sm1_res_div(c,b[2],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| Println("------ ker=im for Schreyer ?------------------"); |
|
| b = a[3]; |
|
| c = Skernel(b[0],v); |
|
| c = c[0]; |
|
| sm1_pmat([c,b[1],v]); |
|
| cc = sm1_res_div(c,b[1],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| c = Skernel(b[1],v); |
|
| c = c[0]; |
|
| cc = sm1_res_div(c,b[2],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| return(a); |
|
| } |
} |
| |
HelpAdd(["IsExact_h", |
| |
["IsExact_h(complex,var): bool", |
| |
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
| |
"cf. ReParse" |
| |
]]); |
| |
|
| |
def ReParse(a) { |
| |
local c; |
| |
if (IsArray(a)) { |
| |
c = Map(a,"ReParse"); |
| |
}else{ |
| |
sm1(a," toString . /c set"); |
| |
} |
| |
return(c); |
| |
} |
| |
HelpAdd(["ReParse", |
| |
["Reparse(obj): obj", |
| |
"It parses the given object in the current ring.", |
| |
"Outputs from SlaScala, Sschreyer may cause a trouble in other functions,", |
| |
"because it uses the Schreyer order.", |
| |
"In this case, ReParse the outputs from these functions.", |
| |
"cf. IsExaxt_h" |
| |
]]); |