| version 1.4, 2000/05/04 11:05:20 |
version 1.12, 2000/05/24 15:24:54 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.3 2000/05/04 06:55:28 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.11 2000/05/19 11:16:51 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
| make a symbolic link by the command |
make a symbolic link by the command |
| ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
| */ |
*/ |
| |
#define OFFSET 0 |
| |
/* #define TOTAL_STRATEGY */ |
| |
/* #define OFFSET 20*/ |
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| |
|
| Line 34 def load_tower() { |
|
| Line 37 def load_tower() { |
|
| sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
| sm1(" /k0-tower.sm1.loaded 1 def "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
| } |
} |
| |
sm1(" oxNoX "); |
| } |
} |
| load_tower(); |
load_tower(); |
| SonAutoReduce = true; |
SonAutoReduce = true; |
| Line 336 def test_SinitOfArray() { |
|
| Line 340 def test_SinitOfArray() { |
|
| |
|
| /* f is assumed to be a monomial with toes. */ |
/* f is assumed to be a monomial with toes. */ |
| def Sdegree(f,tower,level) { |
def Sdegree(f,tower,level) { |
| local i; |
local i,ww, wd; |
| |
/* extern WeightOfSweyl; */ |
| |
ww = WeightOfSweyl; |
| |
f = Init(f); |
| if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
| i = Degree(f,es); |
i = Degree(f,es); |
| return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
#ifdef TOTAL_STRATEGY |
| |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
| |
#endif |
| |
/* Strategy must be compatible with ordering. */ |
| |
/* Weight vector must be non-negative, too. */ |
| |
/* See Sdegree, SgenerateTable, reductionTable. */ |
| |
wd = Sord_w(f,ww); |
| |
return(wd+Sdegree(tower[level-2,i],tower,level-1)); |
| |
|
| } |
} |
| |
|
| def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
| Line 350 def SgenerateTable(tower) { |
|
| Line 365 def SgenerateTable(tower) { |
|
| n = Length(tower[i]); |
n = Length(tower[i]); |
| ans_at_each_floor=NewArray(n); |
ans_at_each_floor=NewArray(n); |
| for (j=0; j<n; j++) { |
for (j=0; j<n; j++) { |
| ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1); |
ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1) |
| |
+ OFFSET; |
| /* Println([i,j,ans_at_each_floor[j]]); */ |
/* Println([i,j,ans_at_each_floor[j]]); */ |
| } |
} |
| ans[i] = ans_at_each_floor; |
ans[i] = ans_at_each_floor; |
| Line 426 def SlaScala(g) { |
|
| Line 442 def SlaScala(g) { |
|
| reductionTable_tmp; |
reductionTable_tmp; |
| /* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
| ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
| Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
| rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g); |
| redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| tower = rf[1]; |
tower = rf[1]; |
| Line 559 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
| Line 575 def SnextI(reductionTable_tmp,strategy,redundantTable, |
|
| } |
} |
| } |
} |
| } |
} |
| |
Print("reductionTable_tmp="); |
| Println(reductionTable_tmp); |
Println(reductionTable_tmp); |
| |
Println("See also reductionTable, strategy, level,i"); |
| Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
| } |
} |
| |
|
| Line 1021 def Sannfs(f,v) { |
|
| Line 1039 def Sannfs(f,v) { |
|
| def Sannfs2(f) { |
def Sannfs2(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| |
/* |
| |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
| |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
| |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
| |
|
| |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| |
pp = Map(p,"Spoly"); |
| |
return(Sminimal_v(pp)); |
| |
/* return(Sminimal(pp)); */ |
| |
} |
| |
|
| |
HelpAdd(["Sannfs2", |
| |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
| |
"See also Sminimal_v, Sannfs3.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:", |
| |
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:" |
| |
]]); |
| |
|
| |
/* Do not forget to turn on TOTAL_STRATEGY */ |
| |
def Sannfs2_laScala(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y"); |
| |
/* Do not make laplace transform. |
| |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| |
p = [p]; |
| |
*/ |
| |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| pp = Map(p[0],"Spoly"); |
pp = Map(p[0],"Spoly"); |
| return(Sminimal(pp)); |
return(Sminimal(pp)); |
| } |
} |
| |
|
| |
def Sannfs2_laScala2(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y"); |
| |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| |
p = [p]; |
| |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
| |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| |
pp = Map(p[0],"Spoly"); |
| |
return(Sminimal(pp)); |
| |
} |
| |
|
| def Sannfs3(f) { |
def Sannfs3(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
| |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
| Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| pp = Map(p[0],"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal(pp)); |
return(Sminimal_v(pp)); |
| } |
} |
| |
|
| |
HelpAdd(["Sannfs3", |
| |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
| |
"See also Sminimal_v, Sannfs2.", |
| |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]: b[2]*b[1]:"]]); |
| |
|
| /* |
/* |
| The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| Line 1042 def Sannfs3(f) { |
|
| Line 1112 def Sannfs3(f) { |
|
| |
|
| */ |
*/ |
| |
|
| |
def Sannfs3_laScala2(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y,z"); |
| |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
| |
Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1], |
| |
["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| |
pp = Map(p,"Spoly"); |
| |
return(Sminimal(pp)); |
| |
} |
| |
|
| |
|
| |
/* The below does not use LaScala-Stillman's algorithm. */ |
| |
def Sschreyer(g) { |
| |
local rf, tower, reductionTable, skel, redundantTable, bases, |
| |
strategy, maxOfStrategy, height, level, n, i, |
| |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
| |
redundantTable_ordinary, redundant_seq_ordinary, |
| |
reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase; |
| |
/* extern WeightOfSweyl; */ |
| |
ww = WeightOfSweyl; |
| |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
| |
rf = SresolutionFrameWithTower(g); |
| |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| |
tower = rf[1]; |
| |
reductionTable = SgenerateTable(tower); |
| |
skel = rf[2]; |
| |
redundantTable = SnewArrayOfFormat(rf[1]); |
| |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
| |
reducer = SnewArrayOfFormat(rf[1]); |
| |
freeRes = SnewArrayOfFormat(rf[1]); |
| |
bettiTable = SsetBettiTable(rf[1],g); |
| |
|
| |
height = Length(reductionTable); |
| |
for (level = 0; level < height; level++) { |
| |
n = Length(reductionTable[level]); |
| |
for (i=0; i<n; i++) { |
| |
Println([level,i]); |
| |
Print("Processing "); Print([level,i]); |
| |
if (level == 0) { |
| |
if (IsNull(redundantTable[level,i])) { |
| |
bases = freeRes[level]; |
| |
/* Println(["At floor : GB=",i,bases,tower[0,i]]); */ |
| |
pos = SwhereInGB(tower[0,i],rf[3,0]); |
| |
bases[i] = rf[3,0,pos]; |
| |
/* redundantTable[level,i] = 0; |
| |
redundantTable_ordinary[level,i] = 0; */ |
| |
freeRes[level] = bases; |
| |
/* Println(["GB=",i,bases,tower[0,i]]); */ |
| |
} |
| |
}else{ /* level >= 1 */ |
| |
if (IsNull(redundantTable[level,i])) { |
| |
bases = freeRes[level]; |
| |
f = SpairAndReduction2(skel,level,i,freeRes,tower, |
| |
ww,redundantTable); |
| |
if (f[0] != Poly("0")) { |
| |
place = f[3]; |
| |
/* (level-1, place) is the place for f[0], |
| |
which is a newly obtained GB. */ |
| |
#ifdef ORDINARY |
| |
redundantTable[level-1,place] = redundant_seq; |
| |
redundant_seq++; |
| |
#else |
| |
if (f[4] > f[5]) { |
| |
/* Zero in the gr-module */ |
| |
Print("v-degree of [org,remainder] = "); |
| |
Println([f[4],f[5]]); |
| |
Print("[level,i] = "); Println([level,i]); |
| |
redundantTable[level-1,place] = 0; |
| |
}else{ |
| |
redundantTable[level-1,place] = redundant_seq; |
| |
redundant_seq++; |
| |
} |
| |
#endif |
| |
redundantTable_ordinary[level-1,place] |
| |
=redundant_seq_ordinary; |
| |
redundant_seq_ordinary++; |
| |
bases[i] = SunitOfFormat(place,f[1])-f[1]; /* syzygy */ |
| |
/* redundantTable[level,i] = 0; |
| |
redundantTable_ordinary[level,i] = 0; */ |
| |
/* i must be equal to f[2], I think. Double check. */ |
| |
|
| |
/* Correction Of Constant */ |
| |
/* Correction of syzygy */ |
| |
c2 = f[6]; /* or -f[6]? Double check. */ |
| |
Print("c2="); Println(c2); |
| |
nn = Length(bases); |
| |
for (ii=0; ii<nn;ii++) { |
| |
if ((ii != i) && (! IsNull(bases[ii]))) { |
| |
m = Length(bases[ii]); |
| |
for (jj=0; jj<m; jj++) { |
| |
if (jj != place) { |
| |
bases[ii,jj] = bases[ii,jj]*c2; |
| |
} |
| |
} |
| |
} |
| |
} |
| |
|
| |
Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]); |
| |
freeRes[level] = bases; |
| |
Print("New freeRes[level] = "); sm1_pmat(freeRes[level]); |
| |
|
| |
/* Update the freeRes[level-1] */ |
| |
Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
| |
bases = freeRes[level-1]; |
| |
bases[place] = f[0]; |
| |
freeRes[level-1] = bases; |
| |
Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
| |
|
| |
reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
| |
/* This reducer is different from that of SlaScala(). */ |
| |
|
| |
reducerBasis = reducer[level-1]; |
| |
nn = Length(reducerBasis); |
| |
for (ii=0; ii<nn;ii++) { |
| |
if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
| |
m = Length(reducerBasis[ii]); |
| |
for (jj=0; jj<m; jj++) { |
| |
if (jj != place) { |
| |
reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
| |
} |
| |
} |
| |
} |
| |
} |
| |
reducer[level-1] = reducerBasis; |
| |
|
| |
}else{ |
| |
/* redundantTable[level,i] = 0; */ |
| |
bases = freeRes[level]; |
| |
bases[i] = f[1]; /* Put the syzygy. */ |
| |
freeRes[level] = bases; |
| |
} |
| |
} /* end of level >= 1 */ |
| |
} |
| |
} /* i loop */ |
| |
|
| |
/* Triangulate reducer */ |
| |
if (level >= 1) { |
| |
Println(" "); |
| |
Print("Triangulating reducer at level "); Println(level-1); |
| |
Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
| |
reducerBase = reducer[level-1]; |
| |
Print("reducerBase="); Println(reducerBase); |
| |
Println("Compare freeRes[level] and reducerBase (put -1)"); |
| |
m = Length(reducerBase); |
| |
for (ii=m-1; ii>=0; ii--) { |
| |
if (!IsNull(reducerBase[ii])) { |
| |
for (jj=ii-1; jj>=0; jj--) { |
| |
if (!IsNull(reducerBase[jj])) { |
| |
if (!IsZero(reducerBase[jj,ii])) { |
| |
/* reducerBase[ii,ii] should be always constant. */ |
| |
reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
| |
} |
| |
} |
| |
} |
| |
} |
| |
} |
| |
Println("New reducer"); |
| |
sm1_pmat(reducerBase); |
| |
reducer[level-1] = reducerBase; |
| |
} |
| |
|
| |
} /* level loop */ |
| |
n = Length(freeRes); |
| |
freeResV = SnewArrayOfFormat(freeRes); |
| |
for (i=0; i<n; i++) { |
| |
bases = freeRes[i]; |
| |
bases = Sbases_to_vec(bases,bettiTable[i]); |
| |
freeResV[i] = bases; |
| |
} |
| |
|
| |
/* Mark the non-redundant elements. */ |
| |
for (i=0; i<n; i++) { |
| |
m = Length(redundantTable[i]); |
| |
for (jj=0; jj<m; jj++) { |
| |
if (IsNull(redundantTable[i,jj])) { |
| |
redundantTable[i,jj] = 0; |
| |
} |
| |
} |
| |
} |
| |
|
| |
|
| |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
| |
} |
| |
|
| |
def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) { |
| |
local i, j, myindex, p, bases, tower2, gi, gj, |
| |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
| |
vdeg,vdeg_reduced,n,c2; |
| |
Println("SpairAndReduction2 : -------------------------"); |
| |
|
| |
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
| |
p = skel[level,ii]; |
| |
myindex = p[0]; |
| |
i = myindex[0]; j = myindex[1]; |
| |
bases = freeRes[level-1]; |
| |
Println(["p and bases ",p,bases]); |
| |
if (IsNull(bases[i]) || IsNull(bases[j])) { |
| |
Println([level,i,j,bases[i],bases[j]]); |
| |
Error("level, i, j : bases[i], bases[j] must not be NULL."); |
| |
} |
| |
|
| |
tower2 = StowerOf(tower,level-1); |
| |
SsetTower(tower2); |
| |
/** sm1(" show_ring "); */ |
| |
|
| |
gi = Stoes_vec(bases[i]); |
| |
gj = Stoes_vec(bases[j]); |
| |
|
| |
ssp = Sspolynomial(gi,gj); |
| |
si = ssp[0,0]; |
| |
sj = ssp[0,1]; |
| |
syzHead = si*es^i; |
| |
/* This will be the head term, I think. But, double check. */ |
| |
Println([si*es^i,sj*es^j]); |
| |
|
| |
Print("[gi, gj] = "); Println([gi,gj]); |
| |
sm1(" [(Homogenize)] system_variable message "); |
| |
Print("Reduce the element "); Println(si*gi+sj*gj); |
| |
Print("by "); Println(bases); |
| |
|
| |
tmp = Sreduction(si*gi+sj*gj, bases); |
| |
|
| |
Print("result is "); Println(tmp); |
| |
if (!IsZero(tmp[0])) { |
| |
Print("Error: base = "); |
| |
Println(Map(bases,"Stoes_vec")); |
| |
Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring."); |
| |
} |
| |
t_syz = tmp[2]; |
| |
si = si*tmp[1]+t_syz[i]; |
| |
sj = sj*tmp[1]+t_syz[j]; |
| |
t_syz[i] = si; |
| |
t_syz[j] = sj; |
| |
|
| |
c2 = null; |
| |
/* tmp[0] must be zero */ |
| |
n = Length(t_syz); |
| |
for (i=0; i<n; i++) { |
| |
if (IsConstant(t_syz[i])){ |
| |
if (!IsZero(t_syz[i])) { |
| |
if (IsNull(redundantTable[level-1,i])) { |
| |
/* i must equal to pos2 below. */ |
| |
c2 = -t_syz[i]; |
| |
tmp[0] = c2*Stoes_vec(freeRes[level-1,i]); |
| |
t_syz[i] = 0; |
| |
/* tmp[0] = t_syz . g */ |
| |
/* break; does not work. Use */ |
| |
i = n; |
| |
} |
| |
} |
| |
} |
| |
} |
| |
|
| |
/* This is essential part for V-minimal resolution. */ |
| |
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
| |
vdeg = SvDegree(si*gi,tower,level-1,ww); |
| |
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
| |
Print("vdegree of the original = "); Println(vdeg); |
| |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
| |
|
| |
if (!IsNull(vdeg_reduced)) { |
| |
if (vdeg_reduced < vdeg) { |
| |
Println("--- Special in V-minimal!"); |
| |
Println(tmp[0]); |
| |
Println("syzygy="); sm1_pmat(t_syz); |
| |
Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]); |
| |
} |
| |
} |
| |
|
| |
|
| |
pos = SwhereInTower(syzHead,tower[level]); |
| |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
| |
/* pos is the place to put syzygy at level. */ |
| |
/* pos2 is the place to put a new GB at level-1. */ |
| |
Println(ans); |
| |
Println(" "); |
| |
return(ans); |
| |
} |
| |
|
| |
HelpAdd(["Sminimal_v", |
| |
["It constructs the V-minimal free resolution from the Schreyer resolution", |
| |
"step by step.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal_v(v);", |
| |
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| |
|
| |
def Sminimal_v(g) { |
| |
local r, freeRes, redundantTable, reducer, maxLevel, |
| |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| |
betti_levelplus, newbases, i, j,qq,tminRes; |
| |
r = Sschreyer(g); |
| |
sm1_pmat(r); |
| |
Debug_Sminimal_v = r; |
| |
Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v"); |
| |
/* Should I turn off the tower?? */ |
| |
freeRes = r[0]; |
| |
redundantTable = r[1]; |
| |
reducer = r[2]; |
| |
minRes = SnewArrayOfFormat(freeRes); |
| |
seq = 0; |
| |
maxSeq = SgetMaxSeq(redundantTable); |
| |
maxLevel = Length(freeRes); |
| |
for (level = 0; level < maxLevel; level++) { |
| |
minRes[level] = freeRes[level]; |
| |
} |
| |
for (level = 0; level < maxLevel; level++) { |
| |
betti = Length(freeRes[level]); |
| |
for (q = betti-1; q>=0; q--) { |
| |
if (redundantTable[level,q] > 0) { |
| |
Print("[seq,level,q]="); Println([seq,level,q]); |
| |
if (level < maxLevel-1) { |
| |
bases = freeRes[level+1]; |
| |
dr = reducer[level,q]; |
| |
/* dr[q] = -1; We do not need this in our reducer format. */ |
| |
/* dr[q] should be a non-zero constant. */ |
| |
newbases = SnewArrayOfFormat(bases); |
| |
betti_levelplus = Length(bases); |
| |
/* |
| |
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
| |
*/ |
| |
for (i=0; i<betti_levelplus; i++) { |
| |
newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
| |
} |
| |
Println(["level, q =", level,q]); |
| |
Println("bases="); sm1_pmat(bases); |
| |
Println("dr="); sm1_pmat(dr); |
| |
Println("newbases="); sm1_pmat(newbases); |
| |
minRes[level+1] = newbases; |
| |
freeRes = minRes; |
| |
#ifdef DEBUG |
| |
for (qq=q; qq<betti; qq++) { |
| |
for (i=0; i<betti_levelplus; i++) { |
| |
if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
| |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
| |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
| |
Error("Stop in Sminimal for debugging."); |
| |
} |
| |
} |
| |
} |
| |
#endif |
| |
} |
| |
} |
| |
} |
| |
} |
| |
tminRes = Stetris(minRes,redundantTable); |
| |
return([SpruneZeroRow(tminRes), tminRes, |
| |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
| |
/* r[4] is the redundantTable_ordinary */ |
| |
/* r[0] is the freeResolution */ |
| |
} |
| |
|
| |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
| |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
| |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
| |
contains 1. |
| |
*/ |
| |
|
| |
def CopyArray(m) { |
| |
local ans,i,n; |
| |
if (IsArray(m)) { |
| |
n = Length(m); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
ans[i] = CopyArray(m[i]); |
| |
} |
| |
return(ans); |
| |
}else{ |
| |
return(m); |
| |
} |
| |
} |
| |
HelpAdd(["CopyArray", |
| |
["It duplicates the argument array recursively.", |
| |
"Example: m=[1,[2,3]];", |
| |
" a=CopyArray(m); a[1] = \"Hello\";", |
| |
" Println(m); Println(a);"]]); |
| |
|
| |
def IsZeroVector(m) { |
| |
local n,i; |
| |
n = Length(m); |
| |
for (i=0; i<n; i++) { |
| |
if (!IsZero(m[i])) { |
| |
return(false); |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|
| |
def SpruneZeroRow(res) { |
| |
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
| |
|
| |
minRes = CopyArray(res); |
| |
n = Length(minRes); |
| |
for (i=0; i<n; i++) { |
| |
base = minRes[i]; |
| |
m = Length(base); |
| |
if (i != n-1) { |
| |
base2 = minRes[i+1]; |
| |
base2 = Transpose(base2); |
| |
} |
| |
newbase = [ ]; |
| |
newbase2 = [ ]; |
| |
for (j=0; j<m; j++) { |
| |
if (!IsZeroVector(base[j])) { |
| |
newbase = Append(newbase,base[j]); |
| |
if (i != n-1) { |
| |
newbase2 = Append(newbase2,base2[j]); |
| |
} |
| |
} |
| |
} |
| |
minRes[i] = newbase; |
| |
if (i != n-1) { |
| |
if (newbase2 == [ ]) { |
| |
minRes[i+1] = [ ]; |
| |
}else{ |
| |
minRes[i+1] = Transpose(newbase2); |
| |
} |
| |
} |
| |
} |
| |
|
| |
newMinRes = [ ]; |
| |
n = Length(minRes); |
| |
i = 0; |
| |
while (i < n ) { |
| |
base = minRes[i]; |
| |
if (base == [ ]) { |
| |
i = n; /* break; */ |
| |
}else{ |
| |
newMinRes = Append(newMinRes,base); |
| |
} |
| |
i++; |
| |
} |
| |
return(newMinRes); |
| |
} |
| |
|
| |
def testAnnfs2(f) { |
| |
local a,i,n; |
| |
a = Sannfs2(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
def testAnnfs3(f) { |
| |
local a,i,n; |
| |
a = Sannfs3(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
|
| |
def ToString_array(p) { |
| |
local ans; |
| |
if (IsArray(p)) { |
| |
ans = Map(p,"ToString_array"); |
| |
}else{ |
| |
ans = ToString(p); |
| |
} |
| |
return(ans); |
| |
} |
| |
|
| |
/* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */ |
| |
|
| |
def sm1_res_div(I,J,V) { |
| |
I = ToString_array(I); |
| |
J = ToString_array(J); |
| |
V = ToString_array(V); |
| |
sm1(" [[ I J] V ] res*div /FunctionValue set "); |
| |
} |
| |
|
| |
/* It has not yet been working */ |
| |
def sm1_res_kernel_image(m,n,v) { |
| |
m = ToString_array(m); |
| |
n = ToString_array(n); |
| |
v = ToString_array(v); |
| |
sm1(" [m n v] res-kernel-image /FunctionValue set "); |
| |
} |
| |
def Skernel(m,v) { |
| |
m = ToString_array(m); |
| |
v = ToString_array(v); |
| |
sm1(" [ m v ] syz /FunctionValue set "); |
| |
} |
| |
|
| |
def test3() { |
| |
local a1,a2,b1,b2; |
| |
a1 = Sannfs3("x^3-y^2*z^2"); |
| |
a1 = a1[0]; |
| |
a2 = Sannfs3_laScala2("x^3-y^2*z^2"); |
| |
a2 = a2[0]; |
| |
b1 = a1[1]; |
| |
b2 = a2[1]; |
| |
sm1_pmat(b2); |
| |
Println(" OVER "); |
| |
sm1_pmat(b1); |
| |
return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]); |
| |
} |
| |
|
| |
def test4() { |
| |
local a,b; |
| |
a = Sannfs3_laScala2("x^3-y^2*z^2"); |
| |
b = a[0]; |
| |
sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z])); |
| |
sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z])); |
| |
return(a); |
| |
} |
| |
|
| |
def sm1_gb(f,v) { |
| |
f =ToString_array(f); |
| |
v = ToString_array(v); |
| |
sm1(" [f v] gb /FunctionValue set "); |
| |
} |
| |
|
| |
def SisComplex(a) { |
| |
local n,i,j,k,b,p,q; |
| |
n = Length(a); |
| |
for (i=0; i<n-1; i++) { |
| |
if (Length(a[i+1]) != 0) { |
| |
b = a[i+1]*a[i]; |
| |
p = Length(b); q = Length(b[0]); |
| |
for (j=0; j<p; j++) { |
| |
for (k=0; k<q; k++) { |
| |
if (!IsZero(b[j,k])) { |
| |
Print("Is is not complex at "); |
| |
Println([i,j,k]); |
| |
return(false); |
| |
} |
| |
} |
| |
} |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|