| version 1.11, 2000/05/19 11:16:51 |
version 1.22, 2000/08/01 06:26:11 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.10 2000/05/07 02:10:44 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.21 2000/08/01 03:42:35 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
Sordinary = false; |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
| make a symbolic link by the command |
make a symbolic link by the command |
| ln -s /usr/bin/cpp /lib/cpp |
ln -s /usr/bin/cpp /lib/cpp |
| */ |
*/ |
| #define OFFSET 0 |
#define OFFSET 0 |
| /* #define TOTAL_STRATEGY */ |
|
| /* #define OFFSET 20*/ |
/* #define OFFSET 20*/ |
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| Line 35 def load_tower() { |
|
| Line 34 def load_tower() { |
|
| if (Boundp("k0-tower.sm1.loaded")) { |
if (Boundp("k0-tower.sm1.loaded")) { |
| }else{ |
}else{ |
| sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
| |
sm1(" [(parse) (new.sm1) pushfile ] extension "); |
| sm1(" /k0-tower.sm1.loaded 1 def "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
| } |
} |
| sm1(" oxNoX "); |
sm1(" oxNoX "); |
|
|
| def Sgroebner(f) { |
def Sgroebner(f) { |
| sm1(" [f] groebner /FunctionValue set"); |
sm1(" [f] groebner /FunctionValue set"); |
| } |
} |
| |
|
| |
def Sinvolutive(f,w) { |
| |
local g,m; |
| |
if (IsArray(f[0])) { |
| |
m = NewArray(Length(f[0])); |
| |
}else{ |
| |
m = [0]; |
| |
} |
| |
g = Sgroebner(f); |
| |
/* This is a temporary code. */ |
| |
sm1(" g 0 get { w m init_w<m>} map /FunctionValue set "); |
| |
} |
| |
|
| |
|
| |
|
| |
def Error(s) { |
| |
sm1(" s error "); |
| |
} |
| |
|
| |
def IsNull(s) { |
| |
if (Stag(s) == 0) return(true); |
| |
else return(false); |
| |
} |
| |
|
| |
def MonomialPart(f) { |
| |
sm1(" [(lmonom) f] gbext /FunctionValue set "); |
| |
} |
| |
|
| |
def Warning(s) { |
| |
Print("Warning: "); |
| |
Println(s); |
| |
} |
| |
def RingOf(f) { |
| |
local r; |
| |
if (IsPolynomial(f)) { |
| |
if (f != Poly("0")) { |
| |
sm1(f," (ring) dc /r set "); |
| |
}else{ |
| |
sm1(" [(CurrentRingp)] system_variable /r set "); |
| |
} |
| |
}else{ |
| |
Warning("RingOf(f): the argument f must be a polynomial. Return the current ring."); |
| |
sm1(" [(CurrentRingp)] system_variable /r set "); |
| |
} |
| |
return(r); |
| |
} |
| |
|
| |
def Ord_w_m(f,w,m) { |
| |
sm1(" f w m ord_w<m> { (universalNumber) dc } map /FunctionValue set "); |
| |
} |
| |
HelpAdd(["Ord_w_m", |
| |
["Ord_w_m(f,w,m) returns the order of f with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"When f is zero, it returns -intInfinity = -999999999.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" Ord_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
| |
|
| |
def Init_w_m(f,w,m) { |
| |
sm1(" f w m init_w<m> /FunctionValue set "); |
| |
} |
| |
HelpAdd(["Init_w_m", |
| |
["Init_w_m(f,w,m) returns the initial of f with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" Init_w_m([x*Dx+1,Dx^2+x^5],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
| |
|
| |
def Max(v) { |
| |
local i,t,n; |
| |
n = Length(v); |
| |
if (n == 0) return(null); |
| |
t = v[0]; |
| |
for (i=0; i<n; i++) { |
| |
if (v[i] > t) { t = v[i];} |
| |
} |
| |
return(t); |
| |
} |
| |
HelpAdd(["Max", |
| |
["Max(v) returns the maximal element in v."]]); |
| |
|
| |
/* End of standard functions that should be moved to standard libraries. */ |
| def test0() { |
def test0() { |
| local f; |
local f; |
| Sweyl("x,y,z"); |
Sweyl("x,y,z"); |
| Line 132 sm1(" [(AvoidTheSameRing)] pushEnv |
|
| Line 212 sm1(" [(AvoidTheSameRing)] pushEnv |
|
| [ [(AvoidTheSameRing) 0] system_variable |
[ [(AvoidTheSameRing) 0] system_variable |
| [(gbListTower) tower (list) dc] system_variable |
[(gbListTower) tower (list) dc] system_variable |
| ] pop popEnv "); |
] pop popEnv "); |
| |
/* sm1("(hoge) message show_ring "); */ |
| } |
} |
| |
|
| def SresolutionFrameWithTower(g,opt) { |
def SresolutionFrameWithTower(g,opt) { |
| local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof, |
| gbasis; |
gbasis, nohomog,i,n; |
| |
/* extern Sordinary */ |
| |
nohomog = false; |
| |
count = -1; Sordinary = false; /* default value for options. */ |
| if (Length(Arglist) >= 2) { |
if (Length(Arglist) >= 2) { |
| if (IsInteger(opt)) count = opt; |
if (IsArray(opt)) { |
| }else{ |
n = Length(opt); |
| count = -1; |
for (i=0; i<n; i++) { |
| |
if (IsInteger(opt[i])) { |
| |
count = opt[i]; |
| |
} |
| |
if (IsString(opt[i])) { |
| |
if (opt[i] == "homogenized") { |
| |
nohomog = true; |
| |
}else if (opt[i] == "Sordinary") { |
| |
Sordinary = true; |
| |
}else{ |
| |
Println("Warning: unknown option"); |
| |
Println(opt); |
| |
} |
| |
} |
| |
} |
| |
} else if (IsNull(opt)){ |
| |
} else { |
| |
Println("Warning: option should be given by an array."); |
| |
Println(opt); |
| |
Println("--------------------------------------------"); |
| |
} |
| } |
} |
| |
|
| sm1(" setupEnvForResolution "); |
sm1(" setupEnvForResolution "); |
| Line 152 def SresolutionFrameWithTower(g,opt) { |
|
| Line 256 def SresolutionFrameWithTower(g,opt) { |
|
| */ |
*/ |
| |
|
| sm1(" (mmLarger) (matrix) switch_function "); |
sm1(" (mmLarger) (matrix) switch_function "); |
| g = Map(g,"Shomogenize"); |
if (! nohomog) { |
| |
Println("Automatic homogenization."); |
| |
g = Map(g,"Shomogenize"); |
| |
}else{ |
| |
Println("No automatic homogenization."); |
| |
} |
| if (SonAutoReduce) { |
if (SonAutoReduce) { |
| sm1("[ (AutoReduce) ] system_variable /autof set "); |
sm1("[ (AutoReduce) ] system_variable /autof set "); |
| sm1("[ (AutoReduce) 1 ] system_variable "); |
sm1("[ (AutoReduce) 1 ] system_variable "); |
| Line 192 def SresolutionFrameWithTower(g,opt) { |
|
| Line 301 def SresolutionFrameWithTower(g,opt) { |
|
| } |
} |
| HelpAdd(["SresolutionFrameWithTower", |
HelpAdd(["SresolutionFrameWithTower", |
| ["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
["It returs [resolution of the initial, gbTower, skelton, gbasis]", |
| |
"option: \"homogenized\" (no automatic homogenization) ", |
| "Example: Sweyl(\"x,y\");", |
"Example: Sweyl(\"x,y\");", |
| " a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
" a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]); |
| |
|
| def SresolutionFrame(f,opt) { |
def SresolutionFrame(f,opt) { |
| local ans; |
local ans; |
| ans = SresolutionFrameWithTower(f); |
ans = SresolutionFrameWithTower(f,opt); |
| return(ans[0]); |
return(ans[0]); |
| } |
} |
| /* ---------------------------- */ |
/* ---------------------------- */ |
| Line 291 def Sres0FrameWithSkelton(g) { |
|
| Line 401 def Sres0FrameWithSkelton(g) { |
|
| |
|
| |
|
| def StotalDegree(f) { |
def StotalDegree(f) { |
| sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set "); |
local d0; |
| |
sm1(" [(grade) f] gbext (universalNumber) dc /d0 set "); |
| |
/* Print("degree of "); Print(f); Print(" is "); Println(d0); */ |
| |
return(d0); |
| } |
} |
| |
|
| |
HelpAdd(["Sord_w", |
| |
["Sord_w(f,w) returns the w-order of f", |
| |
"Example: Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]):"]]); |
| /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
/* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */ |
| def Sord_w(f,w) { |
def Sord_w(f,w) { |
| local neww,i,n; |
local neww,i,n; |
| Line 346 def Sdegree(f,tower,level) { |
|
| Line 462 def Sdegree(f,tower,level) { |
|
| f = Init(f); |
f = Init(f); |
| if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
| i = Degree(f,es); |
i = Degree(f,es); |
| #ifdef TOTAL_STRATEGY |
|
| return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
| #endif |
|
| /* Strategy must be compatible with ordering. */ |
|
| /* Weight vector must be non-negative, too. */ |
|
| /* See Sdegree, SgenerateTable, reductionTable. */ |
|
| wd = Sord_w(f,ww); |
|
| return(wd+Sdegree(tower[level-2,i],tower,level-1)); |
|
| |
|
| } |
} |
| |
|
| def SgenerateTable(tower) { |
def SgenerateTable(tower) { |
| local height, n,i,j, ans, ans_at_each_floor; |
local height, n,i,j, ans, ans_at_each_floor; |
| |
|
| |
/* |
| |
Print("SgenerateTable: tower=");Println(tower); |
| |
sm1(" print_switch_status "); */ |
| height = Length(tower); |
height = Length(tower); |
| ans = NewArray(height); |
ans = NewArray(height); |
| for (i=0; i<height; i++) { |
for (i=0; i<height; i++) { |
| Line 434 def SmaxOfStrategy(a) { |
|
| Line 547 def SmaxOfStrategy(a) { |
|
| } |
} |
| |
|
| |
|
| def SlaScala(g) { |
def SlaScala(g,opt) { |
| local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
| strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
| freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
| Line 443 def SlaScala(g) { |
|
| Line 556 def SlaScala(g) { |
|
| /* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
| ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
| Print("WeightOfSweyl="); Println(WeightOfSweyl); |
Print("WeightOfSweyl="); Println(WeightOfSweyl); |
| rf = SresolutionFrameWithTower(g); |
rf = SresolutionFrameWithTower(g,opt); |
| |
Print("rf="); sm1_pmat(rf); |
| redundant_seq = 1; redundant_seq_ordinary = 1; |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| tower = rf[1]; |
tower = rf[1]; |
| |
|
| |
Println("Generating reduction table which gives an order of reduction."); |
| |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
| |
Print("tower"); Println(tower); |
| reductionTable = SgenerateTable(tower); |
reductionTable = SgenerateTable(tower); |
| |
Print("reductionTable="); sm1_pmat(reductionTable); |
| |
|
| skel = rf[2]; |
skel = rf[2]; |
| redundantTable = SnewArrayOfFormat(rf[1]); |
redundantTable = SnewArrayOfFormat(rf[1]); |
| redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
| Line 467 def SlaScala(g) { |
|
| Line 587 def SlaScala(g) { |
|
| Println([level,i]); |
Println([level,i]); |
| reductionTable_tmp[i] = -200000; |
reductionTable_tmp[i] = -200000; |
| if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
| Print("Processing "); Print([level,i]); |
Print("Processing [level,i]= "); Print([level,i]); |
| Print(" Strategy = "); Println(strategy); |
Print(" Strategy = "); Println(strategy); |
| if (level == 0) { |
if (level == 0) { |
| if (IsNull(redundantTable[level,i])) { |
if (IsNull(redundantTable[level,i])) { |
| Line 488 def SlaScala(g) { |
|
| Line 608 def SlaScala(g) { |
|
| place = f[3]; |
place = f[3]; |
| /* (level-1, place) is the place for f[0], |
/* (level-1, place) is the place for f[0], |
| which is a newly obtained GB. */ |
which is a newly obtained GB. */ |
| #ifdef ORDINARY |
if (Sordinary) { |
| redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
| redundant_seq++; |
redundant_seq++; |
| #else |
}else{ |
| if (f[4] > f[5]) { |
if (f[4] > f[5]) { |
| /* Zero in the gr-module */ |
/* Zero in the gr-module */ |
| Print("v-degree of [org,remainder] = "); |
Print("v-degree of [org,remainder] = "); |
| Line 502 def SlaScala(g) { |
|
| Line 622 def SlaScala(g) { |
|
| redundantTable[level-1,place] = redundant_seq; |
redundantTable[level-1,place] = redundant_seq; |
| redundant_seq++; |
redundant_seq++; |
| } |
} |
| #endif |
} |
| redundantTable_ordinary[level-1,place] |
redundantTable_ordinary[level-1,place] |
| =redundant_seq_ordinary; |
=redundant_seq_ordinary; |
| redundant_seq_ordinary++; |
redundant_seq_ordinary++; |
| Line 535 def SlaScala(g) { |
|
| Line 655 def SlaScala(g) { |
|
| bases = Sbases_to_vec(bases,bettiTable[i]); |
bases = Sbases_to_vec(bases,bettiTable[i]); |
| freeResV[i] = bases; |
freeResV[i] = bases; |
| } |
} |
| return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]); |
| } |
} |
| |
|
| def SthereIs(reductionTable_tmp,strategy) { |
def SthereIs(reductionTable_tmp,strategy) { |
| Line 628 def SunitOfFormat(pos,forms) { |
|
| Line 748 def SunitOfFormat(pos,forms) { |
|
| return(ans); |
return(ans); |
| } |
} |
| |
|
| def Error(s) { |
|
| sm1(" s error "); |
|
| } |
|
| |
|
| def IsNull(s) { |
|
| if (Stag(s) == 0) return(true); |
|
| else return(false); |
|
| } |
|
| |
|
| def StowerOf(tower,level) { |
def StowerOf(tower,level) { |
| local ans,i; |
local ans,i; |
| ans = [ ]; |
ans = [ ]; |
| Line 657 def Sspolynomial(f,g) { |
|
| Line 769 def Sspolynomial(f,g) { |
|
| sm1("f g spol /FunctionValue set"); |
sm1("f g spol /FunctionValue set"); |
| } |
} |
| |
|
| def MonomialPart(f) { |
|
| sm1(" [(lmonom) f] gbext /FunctionValue set "); |
|
| } |
|
| |
|
| |
/* WARNING: |
| |
When you use SwhereInTower, you have to change gbList |
| |
as below. Ofcourse, you should restrore the gbList |
| |
SsetTower(StowerOf(tower,level)); |
| |
pos = SwhereInTower(syzHead,tower[level]); |
| |
*/ |
| def SwhereInTower(f,tower) { |
def SwhereInTower(f,tower) { |
| local i,n,p,q; |
local i,n,p,q; |
| if (f == Poly("0")) return(-1); |
if (f == Poly("0")) return(-1); |
| Line 697 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 812 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
tower2 = StowerOf(tower,level-1); |
| SsetTower(tower2); |
SsetTower(tower2); |
| |
Println(["level=",level]); |
| |
Println(["tower2=",tower2]); |
| /** sm1(" show_ring "); */ |
/** sm1(" show_ring "); */ |
| |
|
| gi = Stoes_vec(bases[i]); |
gi = Stoes_vec(bases[i]); |
| Line 730 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 847 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| sj = sj*tmp[1]+t_syz[j]; |
sj = sj*tmp[1]+t_syz[j]; |
| t_syz[i] = si; |
t_syz[i] = si; |
| t_syz[j] = sj; |
t_syz[j] = sj; |
| |
|
| |
SsetTower(StowerOf(tower,level)); |
| pos = SwhereInTower(syzHead,tower[level]); |
pos = SwhereInTower(syzHead,tower[level]); |
| |
|
| |
SsetTower(StowerOf(tower,level-1)); |
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced]; |
| /* pos is the place to put syzygy at level. */ |
/* pos is the place to put syzygy at level. */ |
| Line 768 def Sreduction(f,myset) { |
|
| Line 889 def Sreduction(f,myset) { |
|
| return([tmp[0],tmp[1],t_syz]); |
return([tmp[0],tmp[1],t_syz]); |
| } |
} |
| |
|
| def Warning(s) { |
|
| Print("Warning: "); |
|
| Println(s); |
|
| } |
|
| def RingOf(f) { |
|
| local r; |
|
| if (IsPolynomial(f)) { |
|
| if (f != Poly("0")) { |
|
| sm1(f," (ring) dc /r set "); |
|
| }else{ |
|
| sm1(" [(CurrentRingp)] system_variable /r set "); |
|
| } |
|
| }else{ |
|
| Warning("RingOf(f): the argument f must be a polynomial. Return the current ring."); |
|
| sm1(" [(CurrentRingp)] system_variable /r set "); |
|
| } |
|
| return(r); |
|
| } |
|
| |
|
| def Sfrom_es(f,size) { |
def Sfrom_es(f,size) { |
| local c,ans, i, d, myes, myee, j,n,r,ans2; |
local c,ans, i, d, myes, myee, j,n,r,ans2; |
| Line 843 def Sbases_to_vec(bases,size) { |
|
| Line 946 def Sbases_to_vec(bases,size) { |
|
| return(newbases); |
return(newbases); |
| } |
} |
| |
|
| def Sminimal(g) { |
HelpAdd(["Sminimal", |
| |
["It constructs the V-minimal free resolution by LaScala's algorithm", |
| |
"option: \"homogenized\" (no automatic homogenization ", |
| |
" : \"Sordinary\" (no (u,v)-minimal resolution)", |
| |
"Options should be given as an array.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal(v);", |
| |
" Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" b = ReParse(a[0]); sm1_pmat(b); ", |
| |
" IsExact_h(b,[x,y]):", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| |
def Sminimal(g,opt) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq, tminRes; |
| r = SlaScala(g); |
if (Length(Arglist) < 2) { |
| |
opt = null; |
| |
} |
| |
/* Sordinary is set in SlaScala(g,opt) --> SresolutionFrameWithTower */ |
| |
|
| |
ScheckIfSchreyer("Sminimal:0"); |
| |
r = SlaScala(g,opt); |
| /* Should I turn off the tower?? */ |
/* Should I turn off the tower?? */ |
| |
ScheckIfSchreyer("Sminimal:1"); |
| freeRes = r[0]; |
freeRes = r[0]; |
| redundantTable = r[1]; |
redundantTable = r[1]; |
| reducer = r[2]; |
reducer = r[2]; |
| Line 904 def Sminimal(g) { |
|
| Line 1030 def Sminimal(g) { |
|
| } |
} |
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
return([SpruneZeroRow(tminRes), tminRes, |
| |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| |
/* r[5] is the skelton */ |
| } |
} |
| |
|
| |
|
| Line 1040 def Sannfs2(f) { |
|
| Line 1168 def Sannfs2(f) { |
|
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y"); |
p = Sannfs(f,"x,y"); |
| sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
| /* |
|
| Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
| ["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
|
| /* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
| |
|
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal_v(pp)); |
return(Sminimal(pp)); |
| /* return(Sminimal(pp)); */ |
|
| } |
} |
| |
|
| HelpAdd(["Sannfs2", |
HelpAdd(["Sannfs2", |
| ["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| "of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
| "See also Sminimal_v, Sannfs3.", |
"See also Sminimal, Sannfs3.", |
| "Example: a=Sannfs2(\"x^3-y^2\");", |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| " b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
| " b[1]*b[0]:", |
" b[1]*b[0]:", |
| Line 1062 HelpAdd(["Sannfs2", |
|
| Line 1184 HelpAdd(["Sannfs2", |
|
| " b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
| " b[1]*b[0]:" |
" b[1]*b[0]:" |
| ]]); |
]]); |
| |
/* Some samples. |
| |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| |
a=Sannfs2("x^3-y^2-x"); |
| |
a=Sannfs2("x*y*(x-y)"); |
| |
*/ |
| |
|
| /* Do not forget to turn on TOTAL_STRATEGY */ |
|
| def Sannfs2_laScala(f) { |
|
| local p,pp; |
|
| p = Sannfs(f,"x,y"); |
|
| /* Do not make laplace transform. |
|
| sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
| p = [p]; |
|
| */ |
|
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
| pp = Map(p[0],"Spoly"); |
|
| return(Sminimal(pp)); |
|
| } |
|
| |
|
| def Sannfs2_laScala2(f) { |
|
| local p,pp; |
|
| p = Sannfs(f,"x,y"); |
|
| sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set "); |
|
| p = [p]; |
|
| Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
|
| ["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
| pp = Map(p[0],"Spoly"); |
|
| return(Sminimal(pp)); |
|
| } |
|
| |
|
| def Sannfs3(f) { |
def Sannfs3(f) { |
| local p,pp; |
local p,pp; |
| p = Sannfs(f,"x,y,z"); |
p = Sannfs(f,"x,y,z"); |
| sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
| Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal_v(pp)); |
return(Sminimal(pp)); |
| } |
} |
| |
|
| HelpAdd(["Sannfs3", |
HelpAdd(["Sannfs3", |
| ["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| "of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
| "See also Sminimal_v, Sannfs2.", |
"See also Sminimal, Sannfs2.", |
| "Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
| " b=a[0]; sm1_pmat(b);", |
" b=a[0]; sm1_pmat(b);", |
| " b[1]*b[0]: b[2]*b[1]:"]]); |
" b[1]*b[0]: b[2]*b[1]:"]]); |
| |
|
| /* |
|
| The betti numbers of most examples are 2,1. (0-th and 1-th). |
|
| a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
|
| a=Sannfs2("x^3-y^2-x"); : it causes an error. It should be fixed. |
|
| a=Sannfs2("x*y*(x-y)"); : it causes an error. It should be fixed. |
|
| |
|
| */ |
|
| |
|
| def Sannfs3_laScala2(f) { |
|
| local p,pp; |
|
| p = Sannfs(f,"x,y,z"); |
|
| sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
| Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1], |
|
| ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
|
| pp = Map(p,"Spoly"); |
|
| return(Sminimal(pp)); |
|
| } |
|
| |
|
| |
|
| /* The below does not use LaScala-Stillman's algorithm. */ |
|
| def Sschreyer(g) { |
|
| local rf, tower, reductionTable, skel, redundantTable, bases, |
|
| strategy, maxOfStrategy, height, level, n, i, |
|
| freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
|
| redundantTable_ordinary, redundant_seq_ordinary, |
|
| reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase; |
|
| /* extern WeightOfSweyl; */ |
|
| ww = WeightOfSweyl; |
|
| Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
|
| rf = SresolutionFrameWithTower(g); |
|
| redundant_seq = 1; redundant_seq_ordinary = 1; |
|
| tower = rf[1]; |
|
| reductionTable = SgenerateTable(tower); |
|
| skel = rf[2]; |
|
| redundantTable = SnewArrayOfFormat(rf[1]); |
|
| redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
|
| reducer = SnewArrayOfFormat(rf[1]); |
|
| freeRes = SnewArrayOfFormat(rf[1]); |
|
| bettiTable = SsetBettiTable(rf[1],g); |
|
| |
|
| height = Length(reductionTable); |
|
| for (level = 0; level < height; level++) { |
|
| n = Length(reductionTable[level]); |
|
| for (i=0; i<n; i++) { |
|
| Println([level,i]); |
|
| Print("Processing "); Print([level,i]); |
|
| if (level == 0) { |
|
| if (IsNull(redundantTable[level,i])) { |
|
| bases = freeRes[level]; |
|
| /* Println(["At floor : GB=",i,bases,tower[0,i]]); */ |
|
| pos = SwhereInGB(tower[0,i],rf[3,0]); |
|
| bases[i] = rf[3,0,pos]; |
|
| /* redundantTable[level,i] = 0; |
|
| redundantTable_ordinary[level,i] = 0; */ |
|
| freeRes[level] = bases; |
|
| /* Println(["GB=",i,bases,tower[0,i]]); */ |
|
| } |
|
| }else{ /* level >= 1 */ |
|
| if (IsNull(redundantTable[level,i])) { |
|
| bases = freeRes[level]; |
|
| f = SpairAndReduction2(skel,level,i,freeRes,tower, |
|
| ww,redundantTable); |
|
| if (f[0] != Poly("0")) { |
|
| place = f[3]; |
|
| /* (level-1, place) is the place for f[0], |
|
| which is a newly obtained GB. */ |
|
| #ifdef ORDINARY |
|
| redundantTable[level-1,place] = redundant_seq; |
|
| redundant_seq++; |
|
| #else |
|
| if (f[4] > f[5]) { |
|
| /* Zero in the gr-module */ |
|
| Print("v-degree of [org,remainder] = "); |
|
| Println([f[4],f[5]]); |
|
| Print("[level,i] = "); Println([level,i]); |
|
| redundantTable[level-1,place] = 0; |
|
| }else{ |
|
| redundantTable[level-1,place] = redundant_seq; |
|
| redundant_seq++; |
|
| } |
|
| #endif |
|
| redundantTable_ordinary[level-1,place] |
|
| =redundant_seq_ordinary; |
|
| redundant_seq_ordinary++; |
|
| bases[i] = SunitOfFormat(place,f[1])-f[1]; /* syzygy */ |
|
| /* redundantTable[level,i] = 0; |
|
| redundantTable_ordinary[level,i] = 0; */ |
|
| /* i must be equal to f[2], I think. Double check. */ |
|
| |
|
| /* Correction Of Constant */ |
|
| /* Correction of syzygy */ |
|
| c2 = f[6]; /* or -f[6]? Double check. */ |
|
| Print("c2="); Println(c2); |
|
| nn = Length(bases); |
|
| for (ii=0; ii<nn;ii++) { |
|
| if ((ii != i) && (! IsNull(bases[ii]))) { |
|
| m = Length(bases[ii]); |
|
| for (jj=0; jj<m; jj++) { |
|
| if (jj != place) { |
|
| bases[ii,jj] = bases[ii,jj]*c2; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| |
|
| Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
| freeRes[level] = bases; |
|
| Print("New freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
| |
|
| /* Update the freeRes[level-1] */ |
|
| Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
| bases = freeRes[level-1]; |
|
| bases[place] = f[0]; |
|
| freeRes[level-1] = bases; |
|
| Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
| |
|
| reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
|
| /* This reducer is different from that of SlaScala(). */ |
|
| |
|
| reducerBasis = reducer[level-1]; |
|
| nn = Length(reducerBasis); |
|
| for (ii=0; ii<nn;ii++) { |
|
| if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
|
| m = Length(reducerBasis[ii]); |
|
| for (jj=0; jj<m; jj++) { |
|
| if (jj != place) { |
|
| reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| reducer[level-1] = reducerBasis; |
|
| |
|
| }else{ |
|
| /* redundantTable[level,i] = 0; */ |
|
| bases = freeRes[level]; |
|
| bases[i] = f[1]; /* Put the syzygy. */ |
|
| freeRes[level] = bases; |
|
| } |
|
| } /* end of level >= 1 */ |
|
| } |
|
| } /* i loop */ |
|
| |
|
| /* Triangulate reducer */ |
|
| if (level >= 1) { |
|
| Println(" "); |
|
| Print("Triangulating reducer at level "); Println(level-1); |
|
| Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
|
| reducerBase = reducer[level-1]; |
|
| Print("reducerBase="); Println(reducerBase); |
|
| Println("Compare freeRes[level] and reducerBase (put -1)"); |
|
| m = Length(reducerBase); |
|
| for (ii=m-1; ii>=0; ii--) { |
|
| if (!IsNull(reducerBase[ii])) { |
|
| for (jj=ii-1; jj>=0; jj--) { |
|
| if (!IsNull(reducerBase[jj])) { |
|
| if (!IsZero(reducerBase[jj,ii])) { |
|
| /* reducerBase[ii,ii] should be always constant. */ |
|
| reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| } |
|
| Println("New reducer"); |
|
| sm1_pmat(reducerBase); |
|
| reducer[level-1] = reducerBase; |
|
| } |
|
| |
|
| } /* level loop */ |
|
| n = Length(freeRes); |
|
| freeResV = SnewArrayOfFormat(freeRes); |
|
| for (i=0; i<n; i++) { |
|
| bases = freeRes[i]; |
|
| bases = Sbases_to_vec(bases,bettiTable[i]); |
|
| freeResV[i] = bases; |
|
| } |
|
| |
|
| /* Mark the non-redundant elements. */ |
|
| for (i=0; i<n; i++) { |
|
| m = Length(redundantTable[i]); |
|
| for (jj=0; jj<m; jj++) { |
|
| if (IsNull(redundantTable[i,jj])) { |
|
| redundantTable[i,jj] = 0; |
|
| } |
|
| } |
|
| } |
|
| |
|
| |
|
| return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
|
| } |
|
| |
|
| def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) { |
|
| local i, j, myindex, p, bases, tower2, gi, gj, |
|
| si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
|
| vdeg,vdeg_reduced,n,c2; |
|
| Println("SpairAndReduction2 : -------------------------"); |
|
| |
|
| if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
|
| p = skel[level,ii]; |
|
| myindex = p[0]; |
|
| i = myindex[0]; j = myindex[1]; |
|
| bases = freeRes[level-1]; |
|
| Println(["p and bases ",p,bases]); |
|
| if (IsNull(bases[i]) || IsNull(bases[j])) { |
|
| Println([level,i,j,bases[i],bases[j]]); |
|
| Error("level, i, j : bases[i], bases[j] must not be NULL."); |
|
| } |
|
| |
|
| tower2 = StowerOf(tower,level-1); |
|
| SsetTower(tower2); |
|
| /** sm1(" show_ring "); */ |
|
| |
|
| gi = Stoes_vec(bases[i]); |
|
| gj = Stoes_vec(bases[j]); |
|
| |
|
| ssp = Sspolynomial(gi,gj); |
|
| si = ssp[0,0]; |
|
| sj = ssp[0,1]; |
|
| syzHead = si*es^i; |
|
| /* This will be the head term, I think. But, double check. */ |
|
| Println([si*es^i,sj*es^j]); |
|
| |
|
| Print("[gi, gj] = "); Println([gi,gj]); |
|
| sm1(" [(Homogenize)] system_variable message "); |
|
| Print("Reduce the element "); Println(si*gi+sj*gj); |
|
| Print("by "); Println(bases); |
|
| |
|
| tmp = Sreduction(si*gi+sj*gj, bases); |
|
| |
|
| Print("result is "); Println(tmp); |
|
| if (!IsZero(tmp[0])) { |
|
| Print("Error: base = "); |
|
| Println(Map(bases,"Stoes_vec")); |
|
| Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring."); |
|
| } |
|
| t_syz = tmp[2]; |
|
| si = si*tmp[1]+t_syz[i]; |
|
| sj = sj*tmp[1]+t_syz[j]; |
|
| t_syz[i] = si; |
|
| t_syz[j] = sj; |
|
| |
|
| c2 = null; |
|
| /* tmp[0] must be zero */ |
|
| n = Length(t_syz); |
|
| for (i=0; i<n; i++) { |
|
| if (IsConstant(t_syz[i])){ |
|
| if (!IsZero(t_syz[i])) { |
|
| if (IsNull(redundantTable[level-1,i])) { |
|
| /* i must equal to pos2 below. */ |
|
| c2 = -t_syz[i]; |
|
| tmp[0] = c2*Stoes_vec(freeRes[level-1,i]); |
|
| t_syz[i] = 0; |
|
| /* tmp[0] = t_syz . g */ |
|
| /* break; does not work. Use */ |
|
| i = n; |
|
| } |
|
| } |
|
| } |
|
| } |
|
| |
|
| /* This is essential part for V-minimal resolution. */ |
|
| /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
|
| vdeg = SvDegree(si*gi,tower,level-1,ww); |
|
| vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
|
| Print("vdegree of the original = "); Println(vdeg); |
|
| Print("vdegree of the remainder = "); Println(vdeg_reduced); |
|
| |
|
| if (!IsNull(vdeg_reduced)) { |
|
| if (vdeg_reduced < vdeg) { |
|
| Println("--- Special in V-minimal!"); |
|
| Println(tmp[0]); |
|
| Println("syzygy="); sm1_pmat(t_syz); |
|
| Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]); |
|
| } |
|
| } |
|
| |
|
| |
|
| pos = SwhereInTower(syzHead,tower[level]); |
|
| pos2 = SwhereInTower(tmp[0],tower[level-1]); |
|
| ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
|
| /* pos is the place to put syzygy at level. */ |
|
| /* pos2 is the place to put a new GB at level-1. */ |
|
| Println(ans); |
|
| Println(" "); |
|
| return(ans); |
|
| } |
|
| |
|
| HelpAdd(["Sminimal_v", |
|
| ["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
| "step by step.", |
|
| "Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
| " v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
| " [3*x^2*Dy + 2*y*Dx, 0],", |
|
| " [0, x^2+y^2],", |
|
| " [0, x*y]];", |
|
| " a=Sminimal_v(v);", |
|
| " sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
| "Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
| |
|
| |
|
| def Sminimal_v(g) { |
|
| local r, freeRes, redundantTable, reducer, maxLevel, |
|
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
|
| betti_levelplus, newbases, i, j,qq,tminRes; |
|
| r = Sschreyer(g); |
|
| sm1_pmat(r); |
|
| Debug_Sminimal_v = r; |
|
| Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v"); |
|
| /* Should I turn off the tower?? */ |
|
| freeRes = r[0]; |
|
| redundantTable = r[1]; |
|
| reducer = r[2]; |
|
| minRes = SnewArrayOfFormat(freeRes); |
|
| seq = 0; |
|
| maxSeq = SgetMaxSeq(redundantTable); |
|
| maxLevel = Length(freeRes); |
|
| for (level = 0; level < maxLevel; level++) { |
|
| minRes[level] = freeRes[level]; |
|
| } |
|
| for (level = 0; level < maxLevel; level++) { |
|
| betti = Length(freeRes[level]); |
|
| for (q = betti-1; q>=0; q--) { |
|
| if (redundantTable[level,q] > 0) { |
|
| Print("[seq,level,q]="); Println([seq,level,q]); |
|
| if (level < maxLevel-1) { |
|
| bases = freeRes[level+1]; |
|
| dr = reducer[level,q]; |
|
| /* dr[q] = -1; We do not need this in our reducer format. */ |
|
| /* dr[q] should be a non-zero constant. */ |
|
| newbases = SnewArrayOfFormat(bases); |
|
| betti_levelplus = Length(bases); |
|
| /* |
|
| bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
|
| */ |
|
| for (i=0; i<betti_levelplus; i++) { |
|
| newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
|
| } |
|
| Println(["level, q =", level,q]); |
|
| Println("bases="); sm1_pmat(bases); |
|
| Println("dr="); sm1_pmat(dr); |
|
| Println("newbases="); sm1_pmat(newbases); |
|
| minRes[level+1] = newbases; |
|
| freeRes = minRes; |
|
| #ifdef DEBUG |
|
| for (qq=q; qq<betti; qq++) { |
|
| for (i=0; i<betti_levelplus; i++) { |
|
| if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
|
| Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
|
| Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
|
| Error("Stop in Sminimal for debugging."); |
|
| } |
|
| } |
|
| } |
|
| #endif |
|
| } |
|
| } |
|
| } |
|
| } |
|
| tminRes = Stetris(minRes,redundantTable); |
|
| return([SpruneZeroRow(tminRes), tminRes, |
|
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
|
| /* r[4] is the redundantTable_ordinary */ |
|
| /* r[0] is the freeResolution */ |
|
| } |
|
| |
|
| /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
| /* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
| x y z (x+y+z-1) seems to be interesting, because the first syzygy |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
| Line 1612 def Skernel(m,v) { |
|
| Line 1353 def Skernel(m,v) { |
|
| sm1(" [ m v ] syz /FunctionValue set "); |
sm1(" [ m v ] syz /FunctionValue set "); |
| } |
} |
| |
|
| def test3() { |
|
| local a1,a2,b1,b2; |
|
| a1 = Sannfs3("x^3-y^2*z^2"); |
|
| a1 = a1[0]; |
|
| a2 = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
| a2 = a2[0]; |
|
| b1 = a1[1]; |
|
| b2 = a2[1]; |
|
| sm1_pmat(b2); |
|
| Println(" OVER "); |
|
| sm1_pmat(b1); |
|
| return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]); |
|
| } |
|
| |
|
| def test4() { |
|
| local a,b; |
|
| a = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
| b = a[0]; |
|
| sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z])); |
|
| sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z])); |
|
| return(a); |
|
| } |
|
| |
|
| def sm1_gb(f,v) { |
def sm1_gb(f,v) { |
| f =ToString_array(f); |
f =ToString_array(f); |
| v = ToString_array(v); |
v = ToString_array(v); |
| sm1(" [f v] gb /FunctionValue set "); |
sm1(" [f v] gb /FunctionValue set "); |
| } |
} |
| |
|
| def test5() { |
|
| local a,b,c,cc,v; |
def SisComplex(a) { |
| a = Sannfs3_laScala2("x^3-y^2*z^2"); |
local n,i,j,k,b,p,q; |
| b = a[0]; |
n = Length(a); |
| v = [x,y,z]; |
for (i=0; i<n-1; i++) { |
| c = Skernel(b[0],v); |
if (Length(a[i+1]) != 0) { |
| c = c[0]; |
b = a[i+1]*a[i]; |
| sm1_pmat([c,b[1],v]); |
p = Length(b); q = Length(b[0]); |
| Println("-----------------------------------"); |
for (j=0; j<p; j++) { |
| cc = sm1_res_div(c,b[1],v); |
for (k=0; k<q; k++) { |
| sm1_pmat(sm1_gb(cc,v)); |
if (!IsZero(b[j,k])) { |
| c = Skernel(b[1],v); |
Print("Is is not complex at "); |
| c = c[0]; |
Println([i,j,k]); |
| cc = sm1_res_div(c,b[2],v); |
return(false); |
| sm1_pmat(sm1_gb(cc,v)); |
} |
| return(a); |
} |
| |
} |
| |
} |
| |
} |
| |
return(true); |
| } |
} |
| def test6() { |
|
| local a,b,c,cc,v; |
def IsExact_h(c,v) { |
| a = Sannfs3("x^3-y^2*z^2"); |
local a; |
| b = a[0]; |
v = ToString_array(v); |
| v = [x,y,z]; |
a = [c,v]; |
| c = Skernel(b[0],v); |
sm1(a," isExact_h /FunctionValue set "); |
| c = c[0]; |
|
| sm1_pmat([c,b[1],v]); |
|
| Println("-------ker = im for minimal ?---------------------"); |
|
| cc = sm1_res_div(c,b[1],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| c = Skernel(b[1],v); |
|
| c = c[0]; |
|
| cc = sm1_res_div(c,b[2],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| Println("------ ker=im for Schreyer ?------------------"); |
|
| b = a[3]; |
|
| c = Skernel(b[0],v); |
|
| c = c[0]; |
|
| sm1_pmat([c,b[1],v]); |
|
| cc = sm1_res_div(c,b[1],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| c = Skernel(b[1],v); |
|
| c = c[0]; |
|
| cc = sm1_res_div(c,b[2],v); |
|
| sm1_pmat(sm1_gb(cc,v)); |
|
| return(a); |
|
| } |
} |
| |
HelpAdd(["IsExact_h", |
| |
["IsExact_h(complex,var): bool", |
| |
"It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)", |
| |
"cf. ReParse" |
| |
]]); |
| |
|
| |
def IsSameIdeal_h(ii,jj,v) { |
| |
local a; |
| |
v = ToString_array(v); |
| |
a = [ii,jj,v]; |
| |
sm1(a," isSameIdeal_h /FunctionValue set "); |
| |
} |
| |
HelpAdd(["IsSameIdeal_h", |
| |
["IsSameIdeal_h(ii,jj,var): bool", |
| |
"It checks the given ideals are the same or not in D<h> (homogenized Weyl algebra)", |
| |
"cf. ReParse" |
| |
]]); |
| |
|
| |
def ReParse(a) { |
| |
local c; |
| |
if (IsArray(a)) { |
| |
c = Map(a,"ReParse"); |
| |
}else{ |
| |
sm1(a," toString . /c set"); |
| |
} |
| |
return(c); |
| |
} |
| |
HelpAdd(["ReParse", |
| |
["Reparse(obj): obj", |
| |
"It parses the given object in the current ring.", |
| |
"Outputs from SlaScala, Sschreyer may cause a trouble in other functions,", |
| |
"because it uses the Schreyer order.", |
| |
"In this case, ReParse the outputs from these functions.", |
| |
"cf. IsExaxt_h" |
| |
]]); |
| |
|
| |
def ScheckIfSchreyer(s) { |
| |
local ss; |
| |
sm1(" (report) (grade) switch_function /ss set "); |
| |
if (ss != "module1v") { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("grade is not module1v"); |
| |
} |
| |
/* |
| |
sm1(" (report) (mmLarger) switch_function /ss set "); |
| |
if (ss != "tower") { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("mmLarger is not tower"); |
| |
} |
| |
*/ |
| |
sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set "); |
| |
if (ss != 1) { |
| |
Print("ScheckIfSchreyer: from "); Println(s); |
| |
Error("Schreyer order is not set."); |
| |
} |
| |
/* More check will be necessary. */ |
| |
return(true); |
| |
} |
| |
|
| |
def SgetShift(mat,w,m) { |
| |
local omat; |
| |
sm1(" mat { w m ord_w<m> {(universalNumber) dc}map } map /omat set"); |
| |
return(Map(omat,"Max")); |
| |
} |
| |
HelpAdd(["SgetShift", |
| |
["SgetShift(mat,w,m) returns the shift vector of mat with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"Dx\",1]]); ", |
| |
" SgetShift([[x*Dx+1,Dx^2+x^5],[Poly(\"0\"),x],[x,x]],[\"x\",-1,\"Dx\",1],[2,0]):"]]); |
| |
|
| |
def SgetShifts(resmat,w) { |
| |
local i,n,ans,m0; |
| |
n = Length(resmat); |
| |
ans = NewArray(n); |
| |
m0 = NewArray(Length(resmat[0,0])); |
| |
ans[0] = m0; |
| |
for (i=0; i<n-1; i++) { |
| |
ans[i+1] = SgetShift(resmat[i],w,m0); |
| |
m0 = ans[i+1]; |
| |
} |
| |
return(ans); |
| |
} |
| |
HelpAdd(["SgetShifts", |
| |
["SgetShifts(resmat,w) returns the shift vectors of the resolution resmat", |
| |
" with respect to w with the shift m.", |
| |
"Note that the order of the ring and the weight w must be the same.", |
| |
"Zero row is not allowed.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];", |
| |
" Sweyl(\"x,y\",[w]); b = Reparse(b);", |
| |
" SgetShifts(b,w):"]]); |
| |
|
| |
def Sinit_w(resmat,w) { |
| |
local shifts,ans,n,i,m,mat,j; |
| |
shifts = SgetShifts(resmat,w); |
| |
n = Length(resmat); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
m = shifts[i]; |
| |
mat = ScopyArray(resmat[i]); |
| |
for (j=0; j<Length(mat); j++) { |
| |
mat[j] = Init_w_m(mat[j],w,m); |
| |
} |
| |
ans[i] = mat; |
| |
} |
| |
return(ans); |
| |
} |
| |
HelpAdd(["Sinit_w", |
| |
["Sinit_w(resmat,w) returns the initial of the complex resmat with respect to the weight w.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; w = [\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1];", |
| |
" Sweyl(\"x,y\",[w]); b = Reparse(b);", |
| |
" c=Sinit_w(b,w); c:" |
| |
]]); |
| |
|