| version 1.9, 2000/05/06 13:41:12 |
version 1.10, 2000/05/07 02:10:44 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.8 2000/05/06 10:45:43 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.9 2000/05/06 13:41:12 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
| /* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
| Line 1044 def Sannfs2(f) { |
|
| Line 1044 def Sannfs2(f) { |
|
| Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
| ["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
| /* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
| |
|
| Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
| return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
| /* return(Sminimal(pp)); */ |
/* return(Sminimal(pp)); */ |
| } |
} |
| |
|
| |
HelpAdd(["Sannfs2", |
| |
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
| |
"See also Sminimal_v, Sannfs3.", |
| |
"Example: a=Sannfs2(\"x^3-y^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:", |
| |
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]:" |
| |
]]); |
| |
|
| /* Do not forget to turn on TOTAL_STRATEGY */ |
/* Do not forget to turn on TOTAL_STRATEGY */ |
| def Sannfs2_laScala(f) { |
def Sannfs2_laScala(f) { |
| local p,pp; |
local p,pp; |
| Line 1072 def Sannfs3(f) { |
|
| Line 1085 def Sannfs3(f) { |
|
| return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
| } |
} |
| |
|
| |
HelpAdd(["Sannfs3", |
| |
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
| |
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
| |
"See also Sminimal_v, Sannfs2.", |
| |
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
| |
" b=a[0]; sm1_pmat(b);", |
| |
" b[1]*b[0]: b[2]*b[1]:"]]); |
| |
|
| /* |
/* |
| The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| Line 1341 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| Line 1362 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
| return(ans); |
return(ans); |
| } |
} |
| |
|
| |
HelpAdd(["Sminimal_v", |
| |
["It constructs the V-minimal free resolution from the Schreyer resolution", |
| |
"step by step.", |
| |
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
| |
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
| |
" [3*x^2*Dy + 2*y*Dx, 0],", |
| |
" [0, x^2+y^2],", |
| |
" [0, x*y]];", |
| |
" a=Sminimal_v(v);", |
| |
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
| |
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
| |
|
| |
|
| def Sminimal_v(g) { |
def Sminimal_v(g) { |
| local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
| minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
| betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq,tminRes; |
| r = Sschreyer(g); |
r = Sschreyer(g); |
| sm1_pmat(r); |
sm1_pmat(r); |
| Debug_Sminimal_v = r; |
Debug_Sminimal_v = r; |
| Line 1399 def Sminimal_v(g) { |
|
| Line 1433 def Sminimal_v(g) { |
|
| } |
} |
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
| |
return([SpruneZeroRow(tminRes), tminRes, |
| [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| /* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
| } |
} |
| |
|
| /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
| |
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
| |
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
| |
contains 1. |
| |
*/ |
| |
|
| |
def CopyArray(m) { |
| |
local ans,i,n; |
| |
if (IsArray(m)) { |
| |
n = Length(m); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
ans[i] = CopyArray(m[i]); |
| |
} |
| |
return(ans); |
| |
}else{ |
| |
return(m); |
| |
} |
| |
} |
| |
HelpAdd(["CopyArray", |
| |
["It duplicates the argument array recursively.", |
| |
"Example: m=[1,[2,3]];", |
| |
" a=CopyArray(m); a[1] = \"Hello\";", |
| |
" Println(m); Println(a);"]]); |
| |
|
| |
def IsZeroVector(m) { |
| |
local n,i; |
| |
n = Length(m); |
| |
for (i=0; i<n; i++) { |
| |
if (!IsZero(m[i])) { |
| |
return(false); |
| |
} |
| |
} |
| |
return(true); |
| |
} |
| |
|
| |
def SpruneZeroRow(res) { |
| |
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
| |
|
| |
minRes = CopyArray(res); |
| |
n = Length(minRes); |
| |
for (i=0; i<n; i++) { |
| |
base = minRes[i]; |
| |
m = Length(base); |
| |
if (i != n-1) { |
| |
base2 = minRes[i+1]; |
| |
base2 = Transpose(base2); |
| |
} |
| |
newbase = [ ]; |
| |
newbase2 = [ ]; |
| |
for (j=0; j<m; j++) { |
| |
if (!IsZeroVector(base[j])) { |
| |
newbase = Append(newbase,base[j]); |
| |
if (i != n-1) { |
| |
newbase2 = Append(newbase2,base2[j]); |
| |
} |
| |
} |
| |
} |
| |
minRes[i] = newbase; |
| |
if (i != n-1) { |
| |
if (newbase2 == [ ]) { |
| |
minRes[i+1] = [ ]; |
| |
}else{ |
| |
minRes[i+1] = Transpose(newbase2); |
| |
} |
| |
} |
| |
} |
| |
|
| |
newMinRes = [ ]; |
| |
n = Length(minRes); |
| |
i = 0; |
| |
while (i < n ) { |
| |
base = minRes[i]; |
| |
if (base == [ ]) { |
| |
i = n; /* break; */ |
| |
}else{ |
| |
newMinRes = Append(newMinRes,base); |
| |
} |
| |
i++; |
| |
} |
| |
return(newMinRes); |
| |
} |
| |
|
| |
def testAnnfs2(f) { |
| |
local a,i,n; |
| |
a = Sannfs2(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |
| |
def testAnnfs3(f) { |
| |
local a,i,n; |
| |
a = Sannfs3(f); |
| |
b=a[0]; |
| |
n = Length(b); |
| |
Println("------ V-minimal free resolution -----"); |
| |
sm1_pmat(b); |
| |
Println("----- Is it complex? ---------------"); |
| |
for (i=0; i<n-1; i++) { |
| |
Println(b[i+1]*b[i]); |
| |
} |
| |
return(a); |
| |
} |