version 1.6, 2000/05/06 07:58:37 |
version 1.10, 2000/05/07 02:10:44 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.5 2000/05/05 08:13:49 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.9 2000/05/06 13:41:12 takayama Exp $ */ |
#define DEBUG 1 |
#define DEBUG 1 |
/* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
Line 37 def load_tower() { |
|
Line 37 def load_tower() { |
|
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" [(parse) (k0-tower.sm1) pushfile ] extension "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
sm1(" /k0-tower.sm1.loaded 1 def "); |
} |
} |
|
sm1(" oxNoX "); |
} |
} |
load_tower(); |
load_tower(); |
SonAutoReduce = true; |
SonAutoReduce = true; |
Line 1043 def Sannfs2(f) { |
|
Line 1044 def Sannfs2(f) { |
|
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
/* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */ |
|
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
pp = Map(p,"Spoly"); |
pp = Map(p,"Spoly"); |
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
/* return(Sminimal(pp)); */ |
/* return(Sminimal(pp)); */ |
} |
} |
|
|
|
HelpAdd(["Sannfs2", |
|
["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y.", |
|
"See also Sminimal_v, Sannfs3.", |
|
"Example: a=Sannfs2(\"x^3-y^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:", |
|
"Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]:" |
|
]]); |
|
|
/* Do not forget to turn on TOTAL_STRATEGY */ |
/* Do not forget to turn on TOTAL_STRATEGY */ |
def Sannfs2_laScala(f) { |
def Sannfs2_laScala(f) { |
local p,pp; |
local p,pp; |
Line 1071 def Sannfs3(f) { |
|
Line 1085 def Sannfs3(f) { |
|
return(Sminimal_v(pp)); |
return(Sminimal_v(pp)); |
} |
} |
|
|
|
HelpAdd(["Sannfs3", |
|
["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)", |
|
"of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.", |
|
"See also Sminimal_v, Sannfs2.", |
|
"Example: a=Sannfs3(\"x^3-y^2*z^2\");", |
|
" b=a[0]; sm1_pmat(b);", |
|
" b[1]*b[0]: b[2]*b[1]:"]]); |
|
|
/* |
/* |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
Line 1152 def Sschreyer(g) { |
|
Line 1174 def Sschreyer(g) { |
|
/* i must be equal to f[2], I think. Double check. */ |
/* i must be equal to f[2], I think. Double check. */ |
|
|
/* Correction Of Constant */ |
/* Correction Of Constant */ |
c2 = -f[6]; /* or f[6]? Double check. */ |
/* Correction of syzygy */ |
|
c2 = f[6]; /* or -f[6]? Double check. */ |
|
Print("c2="); Println(c2); |
nn = Length(bases); |
nn = Length(bases); |
for (ii=0; ii<nn;ii++) { |
for (ii=0; ii<nn;ii++) { |
if ((ii != place) && (! IsNull(bases[ii]))) { |
if ((ii != i) && (! IsNull(bases[ii]))) { |
bases[ii] = bases[ii]*c2; |
m = Length(bases[ii]); |
|
for (jj=0; jj<m; jj++) { |
|
if (jj != place) { |
|
bases[ii,jj] = bases[ii,jj]*c2; |
|
} |
|
} |
} |
} |
} |
} |
|
|
|
Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]); |
freeRes[level] = bases; |
freeRes[level] = bases; |
|
Print("New freeRes[level] = "); sm1_pmat(freeRes[level]); |
|
|
/* Update the freeRes[level-1] */ |
/* Update the freeRes[level-1] */ |
|
Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
bases = freeRes[level-1]; |
bases = freeRes[level-1]; |
bases[place] = f[0]; |
bases[place] = f[0]; |
freeRes[level-1] = bases; |
freeRes[level-1] = bases; |
|
Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]); |
|
|
reducer[level-1,place] = f[1]; |
reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]); |
|
/* This reducer is different from that of SlaScala(). */ |
|
|
|
reducerBasis = reducer[level-1]; |
|
nn = Length(reducerBasis); |
|
for (ii=0; ii<nn;ii++) { |
|
if ((ii != place) && (! IsNull(reducerBasis[ii]))) { |
|
m = Length(reducerBasis[ii]); |
|
for (jj=0; jj<m; jj++) { |
|
if (jj != place) { |
|
reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2; |
|
} |
|
} |
|
} |
|
} |
|
reducer[level-1] = reducerBasis; |
|
|
}else{ |
}else{ |
/* redundantTable[level,i] = 0; */ |
/* redundantTable[level,i] = 0; */ |
bases = freeRes[level]; |
bases = freeRes[level]; |
Line 1182 def Sschreyer(g) { |
|
Line 1231 def Sschreyer(g) { |
|
if (level >= 1) { |
if (level >= 1) { |
Println(" "); |
Println(" "); |
Print("Triangulating reducer at level "); Println(level-1); |
Print("Triangulating reducer at level "); Println(level-1); |
|
Println("freeRes[level]="); sm1_pmat(freeRes[level]); |
reducerBase = reducer[level-1]; |
reducerBase = reducer[level-1]; |
Print("reducerBase="); Println(reducerBase); |
Print("reducerBase="); Println(reducerBase); |
|
Println("Compare freeRes[level] and reducerBase (put -1)"); |
m = Length(reducerBase); |
m = Length(reducerBase); |
for (ii=m-1; ii>=0; ii--) { |
for (ii=m-1; ii>=0; ii--) { |
if (!IsNull(reducerBase[ii])) { |
if (!IsNull(reducerBase[ii])) { |
for (jj=ii-1; jj>=0; jj--) { |
for (jj=ii-1; jj>=0; jj--) { |
if (!IsNull(reducerBase[jj])) { |
if (!IsNull(reducerBase[jj])) { |
if (!IsZero(reducerBase[jj,ii])) { |
if (!IsZero(reducerBase[jj,ii])) { |
reducerBase[jj] = reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
/* reducerBase[ii,ii] should be always constant. */ |
|
reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii]; |
} |
} |
} |
} |
} |
} |
Line 1310 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
Line 1362 def SpairAndReduction2(skel,level,ii,freeRes,tower,ww, |
|
return(ans); |
return(ans); |
} |
} |
|
|
|
HelpAdd(["Sminimal_v", |
|
["It constructs the V-minimal free resolution from the Schreyer resolution", |
|
"step by step.", |
|
"Example: Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);", |
|
" v=[[2*x*Dx + 3*y*Dy+6, 0],", |
|
" [3*x^2*Dy + 2*y*Dx, 0],", |
|
" [0, x^2+y^2],", |
|
" [0, x*y]];", |
|
" a=Sminimal_v(v);", |
|
" sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:", |
|
"Note: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]); |
|
|
|
|
def Sminimal_v(g) { |
def Sminimal_v(g) { |
local r, freeRes, redundantTable, reducer, maxLevel, |
local r, freeRes, redundantTable, reducer, maxLevel, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
minRes, seq, maxSeq, level, betti, q, bases, dr, |
betti_levelplus, newbases, i, j,qq; |
betti_levelplus, newbases, i, j,qq,tminRes; |
r = Sschreyer(g); |
r = Sschreyer(g); |
sm1_pmat(r); |
sm1_pmat(r); |
Debug_Sminimal_v = r; |
Debug_Sminimal_v = r; |
Line 1337 def Sminimal_v(g) { |
|
Line 1402 def Sminimal_v(g) { |
|
if (level < maxLevel-1) { |
if (level < maxLevel-1) { |
bases = freeRes[level+1]; |
bases = freeRes[level+1]; |
dr = reducer[level,q]; |
dr = reducer[level,q]; |
dr[q] = -1; |
/* dr[q] = -1; We do not need this in our reducer format. */ |
|
/* dr[q] should be a non-zero constant. */ |
newbases = SnewArrayOfFormat(bases); |
newbases = SnewArrayOfFormat(bases); |
betti_levelplus = Length(bases); |
betti_levelplus = Length(bases); |
/* |
/* |
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j] |
*/ |
*/ |
for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
newbases[i] = bases[i] + bases[i,q]*dr; |
newbases[i] = dr[q]*bases[i] - bases[i,q]*dr; |
} |
} |
Println(["level, q =", level,q]); |
Println(["level, q =", level,q]); |
Println("bases="); sm1_pmat(bases); |
Println("bases="); sm1_pmat(bases); |
Line 1353 def Sminimal_v(g) { |
|
Line 1419 def Sminimal_v(g) { |
|
minRes[level+1] = newbases; |
minRes[level+1] = newbases; |
freeRes = minRes; |
freeRes = minRes; |
#ifdef DEBUG |
#ifdef DEBUG |
/* Do it later. |
for (qq=q; qq<betti; qq++) { |
for (qq=0; qq<betti; qq++) { |
|
for (i=0; i<betti_levelplus; i++) { |
for (i=0; i<betti_levelplus; i++) { |
if (!IsZero(newbases[i,qq])) { |
if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) { |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Println(["[i,qq]=",[i,qq]," is not zero in newbases."]); |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Print("redundantTable ="); sm1_pmat(redundantTable[level]); |
Error("Stop in Sminimal for debugging."); |
Error("Stop in Sminimal for debugging."); |
} |
} |
} |
} |
} |
} |
*/ |
|
#endif |
#endif |
} |
} |
} |
} |
} |
} |
} |
} |
return([Stetris(minRes,redundantTable), |
tminRes = Stetris(minRes,redundantTable); |
|
return([SpruneZeroRow(tminRes), tminRes, |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
/* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
/* r[0] is the freeResolution */ |
/* r[0] is the freeResolution */ |
} |
} |
|
|
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
/* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */ |
|
/* x y (x+y-1)(x-2), x^3-y^2, x^3 - y^2 z^2, |
|
x y z (x+y+z-1) seems to be interesting, because the first syzygy |
|
contains 1. |
|
*/ |
|
|
|
def CopyArray(m) { |
|
local ans,i,n; |
|
if (IsArray(m)) { |
|
n = Length(m); |
|
ans = NewArray(n); |
|
for (i=0; i<n; i++) { |
|
ans[i] = CopyArray(m[i]); |
|
} |
|
return(ans); |
|
}else{ |
|
return(m); |
|
} |
|
} |
|
HelpAdd(["CopyArray", |
|
["It duplicates the argument array recursively.", |
|
"Example: m=[1,[2,3]];", |
|
" a=CopyArray(m); a[1] = \"Hello\";", |
|
" Println(m); Println(a);"]]); |
|
|
|
def IsZeroVector(m) { |
|
local n,i; |
|
n = Length(m); |
|
for (i=0; i<n; i++) { |
|
if (!IsZero(m[i])) { |
|
return(false); |
|
} |
|
} |
|
return(true); |
|
} |
|
|
|
def SpruneZeroRow(res) { |
|
local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes; |
|
|
|
minRes = CopyArray(res); |
|
n = Length(minRes); |
|
for (i=0; i<n; i++) { |
|
base = minRes[i]; |
|
m = Length(base); |
|
if (i != n-1) { |
|
base2 = minRes[i+1]; |
|
base2 = Transpose(base2); |
|
} |
|
newbase = [ ]; |
|
newbase2 = [ ]; |
|
for (j=0; j<m; j++) { |
|
if (!IsZeroVector(base[j])) { |
|
newbase = Append(newbase,base[j]); |
|
if (i != n-1) { |
|
newbase2 = Append(newbase2,base2[j]); |
|
} |
|
} |
|
} |
|
minRes[i] = newbase; |
|
if (i != n-1) { |
|
if (newbase2 == [ ]) { |
|
minRes[i+1] = [ ]; |
|
}else{ |
|
minRes[i+1] = Transpose(newbase2); |
|
} |
|
} |
|
} |
|
|
|
newMinRes = [ ]; |
|
n = Length(minRes); |
|
i = 0; |
|
while (i < n ) { |
|
base = minRes[i]; |
|
if (base == [ ]) { |
|
i = n; /* break; */ |
|
}else{ |
|
newMinRes = Append(newMinRes,base); |
|
} |
|
i++; |
|
} |
|
return(newMinRes); |
|
} |
|
|
|
def testAnnfs2(f) { |
|
local a,i,n; |
|
a = Sannfs2(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |
|
def testAnnfs3(f) { |
|
local a,i,n; |
|
a = Sannfs3(f); |
|
b=a[0]; |
|
n = Length(b); |
|
Println("------ V-minimal free resolution -----"); |
|
sm1_pmat(b); |
|
Println("----- Is it complex? ---------------"); |
|
for (i=0; i<n-1; i++) { |
|
Println(b[i+1]*b[i]); |
|
} |
|
return(a); |
|
} |