| version 1.1, 2000/05/03 06:42:07 |
version 1.5, 2000/05/05 08:13:49 |
|
|
| /* $OpenXM$ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.4 2000/05/04 11:05:20 takayama Exp $ */ |
| #define DEBUG 1 |
#define DEBUG 1 |
| /* #define ORDINARY 1 */ |
/* #define ORDINARY 1 */ |
| |
/* If you run this program on openxm version 1.1.2 (FreeBSD), |
| |
make a symbolic link by the command |
| |
ln -s /usr/bin/cpp /lib/cpp |
| |
*/ |
| /* Test sequences. |
/* Test sequences. |
| Use load["minimal.k"];; |
Use load["minimal.k"];; |
| |
|
| Line 333 def test_SinitOfArray() { |
|
| Line 337 def test_SinitOfArray() { |
|
| /* f is assumed to be a monomial with toes. */ |
/* f is assumed to be a monomial with toes. */ |
| def Sdegree(f,tower,level) { |
def Sdegree(f,tower,level) { |
| local i; |
local i; |
| |
f = Init(f); |
| if (level <= 1) return(StotalDegree(f)); |
if (level <= 1) return(StotalDegree(f)); |
| i = Degree(f,es); |
i = Degree(f,es); |
| return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1)); |
| Line 367 def SnewArrayOfFormat(p) { |
|
| Line 372 def SnewArrayOfFormat(p) { |
|
| return(null); |
return(null); |
| } |
} |
| } |
} |
| |
def ScopyArray(a) { |
| |
local n, i,ans; |
| |
n = Length(a); |
| |
ans = NewArray(n); |
| |
for (i=0; i<n; i++) { |
| |
ans[i] = a[i]; |
| |
} |
| |
return(ans); |
| |
} |
| def SminOfStrategy(a) { |
def SminOfStrategy(a) { |
| local n,i,ans,tt; |
local n,i,ans,tt; |
| ans = 100000; /* very big number */ |
ans = 100000; /* very big number */ |
| Line 409 def SlaScala(g) { |
|
| Line 423 def SlaScala(g) { |
|
| local rf, tower, reductionTable, skel, redundantTable, bases, |
local rf, tower, reductionTable, skel, redundantTable, bases, |
| strategy, maxOfStrategy, height, level, n, i, |
strategy, maxOfStrategy, height, level, n, i, |
| freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
| redundantTable_ordinary, redundant_seq_ordinary; |
redundantTable_ordinary, redundant_seq_ordinary, |
| |
reductionTable_tmp; |
| /* extern WeightOfSweyl; */ |
/* extern WeightOfSweyl; */ |
| ww = WeightOfSweyl; |
ww = WeightOfSweyl; |
| Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
| Line 430 def SlaScala(g) { |
|
| Line 445 def SlaScala(g) { |
|
| while (strategy <= maxOfStrategy) { |
while (strategy <= maxOfStrategy) { |
| for (level = 0; level < height; level++) { |
for (level = 0; level < height; level++) { |
| n = Length(reductionTable[level]); |
n = Length(reductionTable[level]); |
| for (i=0; i<n; i++) { |
reductionTable_tmp = ScopyArray(reductionTable[level]); |
| |
while (SthereIs(reductionTable_tmp,strategy)) { |
| |
i = SnextI(reductionTable_tmp,strategy,redundantTable, |
| |
skel,level,freeRes); |
| |
Println([level,i]); |
| |
reductionTable_tmp[i] = -200000; |
| if (reductionTable[level,i] == strategy) { |
if (reductionTable[level,i] == strategy) { |
| Print("Processing "); Print([level,i]); |
Print("Processing "); Print([level,i]); |
| Print(" Strategy = "); Println(strategy); |
Print(" Strategy = "); Println(strategy); |
| Line 503 def SlaScala(g) { |
|
| Line 523 def SlaScala(g) { |
|
| return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
| } |
} |
| |
|
| |
def SthereIs(reductionTable_tmp,strategy) { |
| |
local n,i; |
| |
n = Length(reductionTable_tmp); |
| |
for (i=0; i<n; i++) { |
| |
if (reductionTable_tmp[i] == strategy) { |
| |
return(true); |
| |
} |
| |
} |
| |
return(false); |
| |
} |
| |
|
| |
def SnextI(reductionTable_tmp,strategy,redundantTable, |
| |
skel,level,freeRes) |
| |
{ |
| |
local ii,n,p,myindex,i,j,bases; |
| |
n = Length(reductionTable_tmp); |
| |
if (level == 0) { |
| |
for (ii=0; ii<n; ii++) { |
| |
if (reductionTable_tmp[ii] == strategy) { |
| |
return(ii); |
| |
} |
| |
} |
| |
}else{ |
| |
for (ii=0; ii<n; ii++) { |
| |
if (reductionTable_tmp[ii] == strategy) { |
| |
p = skel[level,ii]; |
| |
myindex = p[0]; |
| |
i = myindex[0]; j = myindex[1]; |
| |
bases = freeRes[level-1]; |
| |
if (IsNull(bases[i]) || IsNull(bases[j])) { |
| |
|
| |
}else{ |
| |
return(ii); |
| |
} |
| |
} |
| |
} |
| |
} |
| |
Print("reductionTable_tmp="); |
| |
Println(reductionTable_tmp); |
| |
Println("See also reductionTable, strategy, level,i"); |
| |
Error("SnextI: bases[i] or bases[j] is null for all combinations."); |
| |
} |
| |
|
| |
|
| |
|
| def SsetBettiTable(freeRes,g) { |
def SsetBettiTable(freeRes,g) { |
| local level,i, n,bases,ans; |
local level,i, n,bases,ans; |
| ans = NewArray(Length(freeRes)+1); |
ans = NewArray(Length(freeRes)+1); |
| Line 638 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| Line 703 def SpairAndReduction(skel,level,ii,freeRes,tower,ww) |
|
| |
|
| Print("result is "); Println(tmp); |
Print("result is "); Println(tmp); |
| |
|
| vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); |
/* This is essential part for V-minimal resolution. */ |
| |
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
| |
vdeg = SvDegree(si*gi,tower,level-1,ww); |
| vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
| Print("vdegree of the original = "); Println(vdeg); |
Print("vdegree of the original = "); Println(vdeg); |
| Print("vdegree of the remainder = "); Println(vdeg_reduced); |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
| Line 823 def Sminimal(g) { |
|
| Line 890 def Sminimal(g) { |
|
| } |
} |
| } |
} |
| return([Stetris(minRes,redundantTable), |
return([Stetris(minRes,redundantTable), |
| [ minRes, redundantTable, reducer,r[3],r[4]]]); |
[ minRes, redundantTable, reducer,r[3],r[4]],r[0]]); |
| /* r[4] is the redundantTable_ordinary */ |
/* r[4] is the redundantTable_ordinary */ |
| |
/* r[0] is the freeResolution */ |
| } |
} |
| |
|
| |
|
| Line 933 In(20)=SvDegree(x,tt,2,ww): |
|
| Line 1001 In(20)=SvDegree(x,tt,2,ww): |
|
| def SvDegree(f,tower,level,w) { |
def SvDegree(f,tower,level,w) { |
| local i,ans; |
local i,ans; |
| if (IsZero(f)) return(null); |
if (IsZero(f)) return(null); |
| |
f = Init(f); |
| if (level <= 0) { |
if (level <= 0) { |
| return(Sord_w(f,w)); |
return(Sord_w(f,w)); |
| } |
} |
| Line 942 def SvDegree(f,tower,level,w) { |
|
| Line 1011 def SvDegree(f,tower,level,w) { |
|
| return(ans); |
return(ans); |
| } |
} |
| |
|
| |
def Sannfs(f,v) { |
| |
local f2; |
| |
f2 = ToString(f); |
| |
if (IsArray(v)) { |
| |
v = Map(v,"ToString"); |
| |
} |
| |
sm1(" [f2 v] annfs /FunctionValue set "); |
| |
} |
| |
|
| |
/* Sannfs2("x^3-y^2"); */ |
| |
def Sannfs2(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y"); |
| |
/* |
| |
Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1], |
| |
["x",-1,"y",-1,"Dx",1,"Dy",1]]); */ |
| |
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
| |
pp = Map(p[0],"Spoly"); |
| |
return(Sminimal(pp)); |
| |
} |
| |
|
| |
def Sannfs3(f) { |
| |
local p,pp; |
| |
p = Sannfs(f,"x,y,z"); |
| |
Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); |
| |
pp = Map(p[0],"Spoly"); |
| |
return(Sminimal(pp)); |
| |
} |
| |
|
| |
/* |
| |
The betti numbers of most examples are 2,1. (0-th and 1-th). |
| |
a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2. |
| |
a=Sannfs2("x^3-y^2-x"); : it causes an error. It should be fixed. |
| |
a=Sannfs2("x*y*(x-y)"); : it causes an error. It should be fixed. |
| |
|
| |
*/ |
| |
|
| |
|
| |
|
| |
/* The below is under construction. */ |
| |
def Sschreyer(g) { |
| |
local rf, tower, reductionTable, skel, redundantTable, bases, |
| |
strategy, maxOfStrategy, height, level, n, i, |
| |
freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww, |
| |
redundantTable_ordinary, redundant_seq_ordinary, |
| |
reductionTable_tmp,c2,ii,nn; |
| |
/* extern WeightOfSweyl; */ |
| |
ww = WeightOfSweyl; |
| |
Print("WeghtOfSweyl="); Println(WeightOfSweyl); |
| |
rf = SresolutionFrameWithTower(g); |
| |
redundant_seq = 1; redundant_seq_ordinary = 1; |
| |
tower = rf[1]; |
| |
reductionTable = SgenerateTable(tower); |
| |
skel = rf[2]; |
| |
redundantTable = SnewArrayOfFormat(rf[1]); |
| |
redundantTable_ordinary = SnewArrayOfFormat(rf[1]); |
| |
reducer = SnewArrayOfFormat(rf[1]); |
| |
freeRes = SnewArrayOfFormat(rf[1]); |
| |
bettiTable = SsetBettiTable(rf[1],g); |
| |
|
| |
height = Length(reductionTable); |
| |
for (level = 0; level < height; level++) { |
| |
n = Length(reductionTable[level]); |
| |
for (i=0; i<n; i++) { |
| |
Println([level,i]); |
| |
Print("Processing "); Print([level,i]); |
| |
if (level == 0) { |
| |
if (IsNull(redundantTable[level,i])) { |
| |
bases = freeRes[level]; |
| |
/* Println(["At floor : GB=",i,bases,tower[0,i]]); */ |
| |
pos = SwhereInGB(tower[0,i],rf[3,0]); |
| |
bases[i] = rf[3,0,pos]; |
| |
/* redundantTable[level,i] = 0; |
| |
redundantTable_ordinary[level,i] = 0; */ |
| |
freeRes[level] = bases; |
| |
/* Println(["GB=",i,bases,tower[0,i]]); */ |
| |
} |
| |
}else{ /* level >= 1 */ |
| |
if (IsNull(redundantTable[level,i])) { |
| |
bases = freeRes[level]; |
| |
f = SpairAndReduction2(skel,level,i,freeRes,tower, |
| |
ww,redundantTable); |
| |
if (f[0] != Poly("0")) { |
| |
place = f[3]; |
| |
/* (level-1, place) is the place for f[0], |
| |
which is a newly obtained GB. */ |
| |
#ifdef ORDINARY |
| |
redundantTable[level-1,place] = redundant_seq; |
| |
redundant_seq++; |
| |
#else |
| |
if (f[4] > f[5]) { |
| |
/* Zero in the gr-module */ |
| |
Print("v-degree of [org,remainder] = "); |
| |
Println([f[4],f[5]]); |
| |
Print("[level,i] = "); Println([level,i]); |
| |
redundantTable[level-1,place] = 0; |
| |
}else{ |
| |
redundantTable[level-1,place] = redundant_seq; |
| |
redundant_seq++; |
| |
} |
| |
#endif |
| |
redundantTable_ordinary[level-1,place] |
| |
=redundant_seq_ordinary; |
| |
redundant_seq_ordinary++; |
| |
bases[i] = SunitOfFormat(place,f[1])-f[1]; /* syzygy */ |
| |
/* redundantTable[level,i] = 0; |
| |
redundantTable_ordinary[level,i] = 0; */ |
| |
/* i must be equal to f[2], I think. Double check. */ |
| |
|
| |
/* Correction Of Constant */ |
| |
c2 = f[6]; |
| |
nn = Length(bases); |
| |
for (ii=0; ii<nn;ii++) { |
| |
if (ii != place) { |
| |
bases[ii] = bases[ii]*c2; |
| |
} |
| |
} |
| |
|
| |
freeRes[level] = bases; |
| |
/* bases = freeRes[level-1]; |
| |
bases[place] = f[0]; |
| |
freeRes[level-1] = bases; It is already set. */ |
| |
reducer[level-1,place] = f[1]; |
| |
}else{ |
| |
/* redundantTable[level,i] = 0; */ |
| |
bases = freeRes[level]; |
| |
bases[i] = f[1]; /* Put the syzygy. */ |
| |
freeRes[level] = bases; |
| |
} |
| |
} /* end of level >= 1 */ |
| |
} |
| |
} /* i loop */ |
| |
} /* level loop */ |
| |
n = Length(freeRes); |
| |
freeResV = SnewArrayOfFormat(freeRes); |
| |
for (i=0; i<n; i++) { |
| |
bases = freeRes[i]; |
| |
bases = Sbases_to_vec(bases,bettiTable[i]); |
| |
freeResV[i] = bases; |
| |
} |
| |
return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]); |
| |
} |
| |
|
| |
def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) { |
| |
local i, j, myindex, p, bases, tower2, gi, gj, |
| |
si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2, |
| |
vdeg,vdeg_reduced,n,c2; |
| |
Println("SpairAndReduction2:"); |
| |
|
| |
if (level < 1) Error("level should be >= 1 in SpairAndReduction."); |
| |
p = skel[level,ii]; |
| |
myindex = p[0]; |
| |
i = myindex[0]; j = myindex[1]; |
| |
bases = freeRes[level-1]; |
| |
Println(["p and bases ",p,bases]); |
| |
if (IsNull(bases[i]) || IsNull(bases[j])) { |
| |
Println([level,i,j,bases[i],bases[j]]); |
| |
Error("level, i, j : bases[i], bases[j] must not be NULL."); |
| |
} |
| |
|
| |
tower2 = StowerOf(tower,level-1); |
| |
SsetTower(tower2); |
| |
/** sm1(" show_ring "); */ |
| |
|
| |
gi = Stoes_vec(bases[i]); |
| |
gj = Stoes_vec(bases[j]); |
| |
|
| |
ssp = Sspolynomial(gi,gj); |
| |
si = ssp[0,0]; |
| |
sj = ssp[0,1]; |
| |
syzHead = si*es^i; |
| |
/* This will be the head term, I think. But, double check. */ |
| |
Println([si*es^i,sj*es^j]); |
| |
|
| |
Print("[gi, gj] = "); Println([gi,gj]); |
| |
sm1(" [(Homogenize)] system_variable message "); |
| |
Print("Reduce the element "); Println(si*gi+sj*gj); |
| |
Print("by "); Println(bases); |
| |
|
| |
tmp = Sreduction(si*gi+sj*gj, bases); |
| |
|
| |
Print("result is "); Println(tmp); |
| |
t_syz = tmp[2]; |
| |
si = si*tmp[1]+t_syz[i]; |
| |
sj = sj*tmp[1]+t_syz[j]; |
| |
t_syz[i] = si; |
| |
t_syz[j] = sj; |
| |
|
| |
c2 = null; |
| |
/* tmp[0] must be zero */ |
| |
n = Length(t_syz); |
| |
for (i=0; i<n; i++) { |
| |
if (IsConstant(t_syz[i])) { |
| |
if (IsNull(redundantTable[level-1,i])) { |
| |
/* i must equal to pos2 below. */ |
| |
c2 = -t_syz[i]; |
| |
tmp[0] = freeRes[level-1,i]; |
| |
t_syz[i] = 0; |
| |
/* break; does not work. Use */ |
| |
i = n; |
| |
} |
| |
} |
| |
} |
| |
|
| |
/* This is essential part for V-minimal resolution. */ |
| |
/* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */ |
| |
vdeg = SvDegree(si*gi,tower,level-1,ww); |
| |
vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww); |
| |
Print("vdegree of the original = "); Println(vdeg); |
| |
Print("vdegree of the remainder = "); Println(vdeg_reduced); |
| |
|
| |
pos = SwhereInTower(syzHead,tower[level]); |
| |
pos2 = SwhereInTower(tmp[0],tower[level-1]); |
| |
ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2]; |
| |
/* pos is the place to put syzygy at level. */ |
| |
/* pos2 is the place to put a new GB at level-1. */ |
| |
Println(ans); |
| |
return(ans); |
| |
} |