=================================================================== RCS file: /home/cvs/OpenXM/src/k097/lib/minimal/minimal-test.k,v retrieving revision 1.18 retrieving revision 1.21 diff -u -p -r1.18 -r1.21 --- OpenXM/src/k097/lib/minimal/minimal-test.k 2000/08/21 07:45:22 1.18 +++ OpenXM/src/k097/lib/minimal/minimal-test.k 2000/08/24 00:48:58 1.21 @@ -1,4 +1,4 @@ -/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.17 2000/08/10 02:59:08 takayama Exp $ */ +/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.20 2000/08/22 05:34:06 takayama Exp $ */ load["minimal.k"]; def sm1_resol1(p) { sm1(" p resol1 /FunctionValue set "); @@ -342,15 +342,15 @@ def test21b() { Println("The dimensions of linear spaces -----"); /* sss is the SgetShifts of the Schreyer resol. */ sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; - maxR = 2; /* Maximal root of the b-function. */ + maxR = 3; /* Maximal root of the b-function. */ n = Length(sss); euler = 0; for (i=0; i<n; i++) { ttt = sss[i]; ans = 0; for (j=0; j<Length(ttt); j++) { - p = ttt[j] + maxR + 3; /* degree */ - if (p >= 0) { + p = -ttt[j] + maxR + 3; /* degree */ + if (p-maxR >= 0) { ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); /* Add the number of monomials */ } @@ -366,15 +366,15 @@ def test21c() { Println("The dimensions of linear spaces -----"); /* sss is the SgetShifts of the minimal resol. */ sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; - maxR = 2; /* Maximal root of the b-function. */ + maxR = 3; /* Maximal root of the b-function. */ n = Length(sss); euler = 0; for (i=0; i<n; i++) { ttt = sss[i]; ans = 0; for (j=0; j<Length(ttt); j++) { - p = ttt[j] + maxR + 3; /* degree */ - if (p >= 0) { + p = -ttt[j] + maxR + 3; /* degree */ + if (p-maxR >= 0) { ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); /* Add the number of monomials */ } @@ -492,6 +492,21 @@ def test25() { [0,0,1,0,0,1]],[0,0,0,0]);; Sweyl("x1,x2,x3,x4,x5,x6",[w]); ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); +} + +def test25b() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, + "x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; + ans2 = GKZ([[1,1,1,1,1,1], + [0,0,0,1,1,1], + [0,1,0,0,1,0], + [0,0,1,0,0,1]],[0,0,0,0]); + Sweyl("x1,x2,x3,x4,x5,x6",[w]); + ans2 = ans2[0]; + sm1(" ans2 rest rest rest rest /ans2 set "); + Println(ans2); /* Generators of the toric ideal */ + ans2 = ReParse(ans2); a = Sminimal(ans2); }