===================================================================
RCS file: /home/cvs/OpenXM/src/k097/lib/minimal/minimal-test.k,v
retrieving revision 1.2
retrieving revision 1.4
diff -u -p -r1.2 -r1.4
--- OpenXM/src/k097/lib/minimal/minimal-test.k	2000/06/08 08:37:53	1.2
+++ OpenXM/src/k097/lib/minimal/minimal-test.k	2000/06/14 07:44:05	1.4
@@ -1,4 +1,4 @@
-/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.1 2000/05/24 15:31:28 takayama Exp $ */
+/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.3 2000/06/09 08:04:54 takayama Exp $ */
 load["minimal.k"];
 def test5() {
   local a,b,c,cc,v;
@@ -139,7 +139,7 @@ def test8a() {
 
   v = [x,y,z];
   b = ans;
-  Println("------ ker=im for Schreyer ?------------------");
+  Println("------ ker=im for Schreyer ?----- wrong method!!!-----------");
   c = Skernel(b[0],v);
   c = c[0];
   sm1_pmat([c,b[1],v]);
@@ -176,7 +176,7 @@ def test9() {
 
 }
 
-/* Check if the complex is exact or not? */
+/* Check if the complex by Sschreyer() is exact or not in our example? */
 def test10() {
   local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2, r;
   f = "x^3-y^2*z^2";
@@ -196,9 +196,171 @@ def test10() {
   ans_all = Sschreyer(pp);  /* Schreyer by LaScala-Stillman */
   ans2 = ans_all[0];
  
-  r= SisExact_h(ans2,[x,y,z]);
+  sm1(" /gb.verbose 1 def ");
+
+  ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
+  Sweyl("x,y,z",ww2);
+  ans2 = ReParse(ans2);
+  r= IsExact_h(ans2,[x,y,z]);
   Print(r);
   
   return([r,[ans,ans2]]);
 
 }
+
+def test11() {
+  local  a;
+  a = test_ann3("x^3-y^2*z^2");
+  return(a);
+}
+/* f should be a string. */
+def test_ann3(f) {
+  local a,v,ww2,ans2;
+  a = Sannfs3_laScala2(f);
+  ans2 = a[0];
+  v = [x,y,z];
+  ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
+  Sweyl("x,y,z",ww2);
+  ans2 = ReParse(ans2);
+  r= IsExact_h(ans2,[x,y,z]);
+  Println(r);
+  return([r,ans2]);
+}
+def test11a() {
+  local a,v,ww2,ans2;
+/* constructed by test11.
+  ans2 =
+       [[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , 
+        [[3*Dx^2*h , 0 , Dy , -Dz] , 
+         [6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , 
+         [0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , 
+         [2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , 
+         [0 , 0 , 0 , 0] , 
+         [2*x*Dy*Dz , 0 , z , -y] , 
+         [0 , 0 , 0 , 0] , 
+         [0 , 0 , 0 , 0] , 
+         [0 , 0 , 0 , 0]] , 
+  [[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+   [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+   [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+   [-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy^2 , 3*Dy*Dz , -2*x*Dy , 2*x*Dz , 0] , 
+   [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+   [3*y*z , z , y , -2*x*Dy*Dz , -3*z*Dy , 2*x*Dx , 2*x*z , -2*x*y , 0] , 
+   [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+   [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+   [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]] , 
+   [[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+    [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , 
+    [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]]]
+*/
+  ans2 =
+       [[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , 
+        [[3*Dx^2*h , 0 , Dy , -Dz] , 
+         [6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , 
+         [0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , 
+         [2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , 
+         [2*x*Dy*Dz , 0 , z , -y]], 
+  [[-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy*Dz ] , 
+   [3*y*z , z , y , -2*x*Dy*Dz , 2*x*Dx]]];
+
+  sm1_pmat( ans2[1]*ans2[0] );
+  sm1_pmat( ans2[2]*ans2[1] );
+  ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
+  Sweyl("x,y,z",ww2);
+  ans2 = ReParse(ans2);
+  r= IsExact_h(ans2,[x,y,z]);
+  Println(r);
+  return([r,ans2]);
+}
+
+def test12() {
+  local a,v,ww2,ans2;
+  a = Sannfs3("x^3-y^2*z^2");
+  ans2 = a[0];
+  v = [x,y,z];
+  ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
+  Sweyl("x,y,z",ww2); 
+  ans2 = ReParse(ans2); /* DO NOT FORGET! */
+  r= IsExact_h(ans2,[x,y,z]);
+  Println(r);
+  Println("It may stop by non-exact statement. The code of Sminimal_v (non-LaScala-Stillman contains bugs.");
+  return([r,ans2]);
+}
+
+def test13() {
+  Println("test13 try to construct a minimal free resolution");
+  Println("of a GKZ system [[1,2]]. 6/12, 2000.");
+  ww2 = [["x1",-1,"x2",-1,"Dx1",1,"Dx2",1]];
+  Sweyl("x1,x2",ww2);
+  ans2 = GKZ([[1,2]],[0]);
+  ans2 = ReParse(ans2[0]);
+  return(Sminimal(ans2));
+}
+
+def test14() {
+  Println("test14 try to construct a minimal free resolution");
+  Println("of a GKZ system [[1,2,3]]. 6/12, 2000.");
+  ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]];
+  Sweyl("x1,x2,x3",ww2);
+  ans2 = GKZ([[1,2,3]],[0]);  /* It stops by the strategy error. */
+  ans2 = ReParse(ans2[0]);
+  return(Sminimal(ans2));
+}
+def test14a() {
+  Println("test14a try to construct a minimal free resolution");
+  Println("of a GKZ system [[1,2,3]]. 6/12, 2000.");
+  Println("Without automatic homogenization.");
+  ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]];
+  Sweyl("x1,x2,x3",ww2);
+  ans2 = [x1*Dx1+2*x2*Dx2+3*x3*Dx3 , Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , 
+          Dx2^2-Dx1*Dx3 ];
+  ans2 = ReParse(ans2);
+  return(Sminimal(ans2,"homogenized"));
+}
+
+def test15() {
+  Println("test15 try to construct a minimal free resolution");
+  Println("of a GKZ system [[1,2,3]] by the order filt. 6/12, 2000.");
+  ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]];
+  Sweyl("x1,x2,x3",ww2);
+  ans2 = GKZ([[1,2,3]],[0]);  
+  ans2 = ReParse(ans2[0]);
+  return(Sminimal(ans2));
+}
+
+def test15b() {
+  Println("test15b try to construct a minimal free resolution");
+  Println("of toric [[1,2,3]] by the order filt. 6/12, 2000.");
+  ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]];
+  Sweyl("x1,x2,x3",ww2);
+  ans2 = [Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , Dx2^2-Dx1*Dx3 ];
+  ans2 = ReParse(ans2);
+  return(Sminimal(ans2,"homogenized"));
+}
+
+def test16() {
+  Println("test16 try to construct a minimal free resolution");
+  Println("of a GKZ system [[1,2,3,5]] by the order filt. 6/12, 2000.");
+  ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]];
+  Sweyl("x1,x2,x3,x4",ww2);
+  ans2 = GKZ([[1,2,3,5]],[0]);  
+  ans2 = ReParse(ans2[0]);
+  return(Sminimal(ans2));
+}
+
+def test16b() {
+  Println("test16b try to construct a minimal free resolution");
+  Println("of a toric [[1,2,3,5]] by the order filt. 6/12, 2000.");
+  ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]];
+  Sweyl("x1,x2,x3,x4",ww2);
+  ans2 = GKZ([[1,2,3,5]],[0]);  
+  ans3 = Rest(ans2[0]);
+  ans3 = ReParse(ans3);
+  Println("Toric variety:");
+  Println(ans3);
+  return(Sminimal(ans3));
+}
+
+          
+
+