=================================================================== RCS file: /home/cvs/OpenXM/src/k097/lib/minimal/minimal-test.k,v retrieving revision 1.2 retrieving revision 1.21 diff -u -p -r1.2 -r1.21 --- OpenXM/src/k097/lib/minimal/minimal-test.k 2000/06/08 08:37:53 1.2 +++ OpenXM/src/k097/lib/minimal/minimal-test.k 2000/08/24 00:48:58 1.21 @@ -1,86 +1,9 @@ -/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.1 2000/05/24 15:31:28 takayama Exp $ */ +/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.20 2000/08/22 05:34:06 takayama Exp $ */ load["minimal.k"]; -def test5() { - local a,b,c,cc,v; - a = Sannfs3_laScala2("x^3-y^2*z^2"); - b = a[0]; - v = [x,y,z]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - Println("-----------------------------------"); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(a); -} -def test6() { - local a,b,c,cc,v; - a = Sannfs3("x^3-y^2*z^2"); - b = a[0]; - v = [x,y,z]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - Println("-------ker = im for minimal ?---------------------"); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - Println("------ ker=im for Schreyer ?------------------"); - b = a[3]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(a); -} - -/* May 23, Tue */ -def test7() { - local a,b,c,cc,v; - a = Sannfs3_laScala2("x^3-y^2*z^2"); - b = a[0]; - v = [x,y,z]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - Println("-------ker = im for minimal ?---------------------"); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - Println("------ ker=im for Schreyer ?------------------"); - b = a[3]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(a); -} - def sm1_resol1(p) { sm1(" p resol1 /FunctionValue set "); } - def test8() { local p,pp,ans,b,c,cc,ww,ww2; f = "x^3-y^2*z^2"; @@ -118,87 +41,474 @@ def test8() { SisComplex(a): */ -def test8a() { - local p,pp,ans,b,c,cc,ww, ans_all; - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - /* Removed "x",1, ... ===> It causes an error. I do not know the reason.*/ - Sweyl("x,y,z",ww); - pp = Map(p,"Spoly"); - /* return(pp); */ - /* pp = - [y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 , - 2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ] - */ - ans_all = Sschreyer(pp); - ans = ans_all[0]; - /* ans = sm1_resol1([pp,"x,y,z",ww]); */ - /* Schreyer is in ans. */ - +def test11() { + local a; + a = test_ann3("x^3-y^2*z^2"); + return(a); +} +/* f should be a string. */ +/* a=test_ann3("x^3+y^3+z^3"); +It returns the following resolution in 1.5 hours. June 14, 2000. + [ + [ + [ x*Dx+y*Dy+z*Dz-3*h^2 ] + [ -z*Dy^2+y*Dz^2 ] + [ -z*Dx^2+x*Dz^2 ] + [ -y*Dx^2+x*Dy^2 ] + ] + [ + [ 0 , -x , y , -z ] + [ z*Dx^2-x*Dz^2 , x*Dy , x*Dx+z*Dz-3*h^2 , z*Dy ] + [ y*Dx^2-x*Dy^2 , -x*Dz , y*Dz , x*Dx+y*Dy-3*h^2 ] + [ 0 , Dx^2 , -Dy^2 , Dz^2 ] + [ z*Dy^2-y*Dz^2 , x*Dx+y*Dy+z*Dz-2*h^2 , 0 , 0 ] + ] + [ + [ -x*Dx+3*h^2 , y , -z , 0 , -x ] + [ Dy^3+Dz^3 , Dy^2 , -Dz^2 , x*Dx+y*Dy+z*Dz , -Dx^2 ] + ] + ] +*/ +def test_ann3(f) { + local a,v,ww2,ans2; + a = Sannfs3(f); + ans2 = a[0]; v = [x,y,z]; - b = ans; - Println("------ ker=im for Schreyer ?------------------"); - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(ans); + ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; + Sweyl("x,y,z",ww2); + ans2 = ReParse(ans2); + r= IsExact_h(ans2,[x,y,z]); + Println(r); + return([r,ans2,a]); } +def test11a() { + local a,v,ww2,ans2; +/* constructed by test11. + ans2 = + [[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , + [[3*Dx^2*h , 0 , Dy , -Dz] , + [6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , + [0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , + [2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , + [0 , 0 , 0 , 0] , + [2*x*Dy*Dz , 0 , z , -y] , + [0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0]] , + [[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy^2 , 3*Dy*Dz , -2*x*Dy , 2*x*Dz , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [3*y*z , z , y , -2*x*Dy*Dz , -3*z*Dy , 2*x*Dx , 2*x*z , -2*x*y , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]] , + [[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , + [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]]] +*/ + ans2 = + [[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , + [[3*Dx^2*h , 0 , Dy , -Dz] , + [6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , + [0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , + [2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , + [2*x*Dy*Dz , 0 , z , -y]], + [[-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy*Dz ] , + [3*y*z , z , y , -2*x*Dy*Dz , 2*x*Dx]]]; -/* Comparing two constructions */ -def test9() { - local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2; - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); + sm1_pmat( ans2[1]*ans2[0] ); + sm1_pmat( ans2[2]*ans2[1] ); ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); Sweyl("x,y,z",ww2); - pp = Map(p,"Spoly"); - ans = sm1_resol1([pp,"x,y,z",ww2]); + ans2 = ReParse(ans2); + r= IsExact_h(ans2,[x,y,z]); + Println(r); + return([r,ans2]); +} - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - Sweyl("x,y,z",ww); - pp = Map(p,"Spoly"); - ans_all = Sschreyer(pp); - ans2 = ans_all[0]; +def test12() { + local a,v,ww2,ans2; + a = Sannfs3("x^3-y^2*z^2"); + ans2 = a[0]; + v = [x,y,z]; + ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; + Sweyl("x,y,z",ww2); + ans2 = ReParse(ans2); /* DO NOT FORGET! */ + r= IsExact_h(ans2,[x,y,z]); + Println(r); + return([r,ans2]); +} - return([ans,ans2]); +def test13() { + Println("test13 try to construct a minimal free resolution"); + Println("of a GKZ system [[1,2]]. 6/12, 2000."); + ans2 = GKZ([[1,2]],[0]); + /* Be careful!! It resets the grade to module1, not module1v */ + ww2 = [["x1",-1,"x2",-1,"Dx1",1,"Dx2",1]]; + Sweyl("x1,x2",ww2); + ans2 = ReParse(ans2[0]); + Println(ans2); + return(Sminimal(ans2)); +} +def test14() { + Println("test14 try to construct a minimal free resolution"); + Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); + ans2 = GKZ([[1,2,3]],[0]); + /* It stops by the strategy error. + July 26, 2000. It works fine after fixing a bug in resol.c */ + ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; + Sweyl("x1,x2,x3",ww2); + ans2 = ReParse(ans2[0]); + return(Sminimal(ans2)); } +def test14a() { + Println("test14a try to construct a minimal free resolution"); + Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); + Println("Without automatic homogenization."); + ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; + Sweyl("x1,x2,x3",ww2); + ans2 = [x1*Dx1+2*x2*Dx2+3*x3*Dx3 , Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , + Dx2^2-Dx1*Dx3 ]; + ans2 = ReParse(ans2); + return(Sminimal(ans2,["homogenized"])); +} -/* Check if the complex is exact or not? */ -def test10() { - local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2, r; - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - Sweyl("x,y,z",ww2); - pp = Map(p,"Spoly"); - ans = sm1_resol1([pp,"x,y,z",ww2]); +def test15() { + Println("test15 try to construct a minimal free resolution"); + Println("of a GKZ system [[1,2,3]] by the order filt. 6/12, 2000."); + ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; + ans2 = GKZ([[1,2,3]],[0]); + Sweyl("x1,x2,x3",ww2); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + Sweyl("x1,x2,x3"); + ans3 = ReParse(a[0]); + r= IsExact_h(ans3,[x1,x2,x3]); + Println(r); + return(a); +} - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - Sweyl("x,y,z",ww); - pp = Map(p,"Spoly"); - ans_all = Sschreyer(pp); /* Schreyer by LaScala-Stillman */ - ans2 = ans_all[0]; - - r= SisExact_h(ans2,[x,y,z]); - Print(r); - - return([r,[ans,ans2]]); +def test15b() { + Println("test15b try to construct a minimal free resolution"); + Println("of toric [[1,2,3]] by the order filt. 6/12, 2000."); + ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; + Sweyl("x1,x2,x3",ww2); + ans2 = [Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , Dx2^2-Dx1*Dx3 ]; + ans2 = ReParse(ans2); + return(Sminimal(ans2,["homogenized"])); +} +def test15c() { + Println("test15c try to construct a minimal free resolution "); + Println("of a GKZ system [[1,2,3]] by -1,1"); + ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]]; + ans2 = GKZ([[1,2,3]],[0]); + Sweyl("x1,x2,x3",ww2); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + Sweyl("x1,x2,x3"); + ans3 = ReParse(a[0]); + r= IsExact_h(ans3,[x1,x2,x3]); + Println(r); + return(a); } +def test16() { + Println("test16 try to construct a minimal free resolution"); + Println("of a GKZ system [[1,2,3,5]] by the order filt. 6/12, 2000."); + ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]]; + Sweyl("x1,x2,x3,x4",ww2); + ans2 = GKZ([[1,2,3,5]],[0]); + ans2 = ReParse(ans2[0]); + return(Sminimal(ans2)); +} + +def test16b() { + Println("test16b try to construct a minimal free resolution"); + Println("of a toric [[1,2,3,5]] by the order filt. 6/12, 2000."); + ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]]; + Sweyl("x1,x2,x3,x4",ww2); + ans2 = GKZ([[1,2,3,5]],[0]); + ans3 = Rest(ans2[0]); + ans3 = ReParse(ans3); + Println("Toric variety:"); + Println(ans3); + return(Sminimal(ans3)); +} + + +def test17() { + a=Sannfs3("x^3-y^2*z^2"); + b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; + Sweyl("x,y,z",[w]); b = Reparse(b); + c=Sinit_w(b,w); + Println("Resolution (b)----"); + sm1_pmat(b); + Println("Initial (c)----"); + sm1_pmat(c); + Println(IsExact_h(c,"x,y,z")); +} + +def test_if_v_strict(resmat,w,v) { + local b,c,g; + Sweyl(v,[w]); b = Reparse(resmat); + Println("Degree shifts "); + Println(SgetShifts(b,w)); + c=Sinit_w(b,w); + Println("Resolution (b)----"); + sm1_pmat(b); + Println("Initial (c)----"); + sm1_pmat(c); + Println("Exactness of the resolution ---"); + Println(IsExact_h(b,v)); + Println("Exactness of the initial complex.---"); + Println(IsExact_h(c,v)); + g = Sinvolutive(b[0],w); + /* Println("Involutive basis ---"); + sm1_pmat(g); + Println(Sinvolutive(c[0],w)); + sm1(" /gb.verbose 1 def "); */ + Println("Is same ideal?"); + Println(IsSameIdeal_h(g,c[0],v)); +} +def test17b() { + a=Sannfs3("x^3-y^2*z^2"); + b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; + test_if_v_strict(b,w,"x,y,z"); + return(a); +} + +def test18() { + a=Sannfs2("x^3-y^2"); + b=a[0]; w = ["x",-1,"y",-1,"Dx",1,"Dy",1]; + test_if_v_strict(b,w,"x,y"); + return(a); +} + +def test19() { + Println("test19 try to construct a minimal free resolution and check if it is v-strict."); + Println("of a GKZ system [[1,2,3]] by -1,1"); + ww2 = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; + ans2 = GKZ([[1,2,3]],[0]); + Sweyl("x1,x2,x3",[ww2]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + b = a[0]; + test_if_v_strict(b,ww2,"x1,x2,x3"); + return(a); +} + +/* Need more than 100M memory. 291, 845, 1266, 1116, 592 : Schreyer frame. + I've not yet tried to finish the computation. */ +def test20() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; + ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[0,0]); + Sweyl("x1,x2,x3,x4",[w]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + b = a[0]; + /* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ + return(a); +} +def test20b() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; + ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[1,2]); + Sweyl("x1,x2,x3,x4",[w]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + b = a[0]; + /* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ + return(a); +} + +def test21() { + a=Sannfs3("x^3-y^2*z^2+y^2+z^2"); + /* a=Sannfs3("x^3-y-z"); for debug */ + b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; + test_if_v_strict(b,w,"x,y,z"); + Println("Degree shifts of Schreyer resolution ----"); + Println(SgetShifts(Reparse(a[3]),w)); + return(a); +} +def test21b() { + local i,j,n,sss, maxR, ttt,ans,p, euler; + Println("The dimensions of linear spaces -----"); + /* sss is the SgetShifts of the Schreyer resol. */ + sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; + maxR = 3; /* Maximal root of the b-function. */ + n = Length(sss); + euler = 0; + for (i=0; i<n; i++) { + ttt = sss[i]; + ans = 0; + for (j=0; j<Length(ttt); j++) { + p = -ttt[j] + maxR + 3; /* degree */ + if (p-maxR >= 0) { + ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); + /* Add the number of monomials */ + } + } + Print(ans); Print(", "); + euler = euler+(-1)^i*ans; + } + Println(" "); + Print("Euler number is : "); Println(euler); +} +def test21c() { + local i,j,n,sss, maxR, ttt,ans,p, euler; + Println("The dimensions of linear spaces -----"); + /* sss is the SgetShifts of the minimal resol. */ + sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; + maxR = 3; /* Maximal root of the b-function. */ + n = Length(sss); + euler = 0; + for (i=0; i<n; i++) { + ttt = sss[i]; + ans = 0; + for (j=0; j<Length(ttt); j++) { + p = -ttt[j] + maxR + 3; /* degree */ + if (p-maxR >= 0) { + ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); + /* Add the number of monomials */ + } + } + Print(ans); Print(", "); + euler = euler+(-1)^i*ans; + } + Println(" "); + Print("Euler number is : "); Println(euler); +} +def test22() { + a=Sannfs3("x^3+y^3+z^3"); + b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; + test_if_v_strict(b,w,"x,y,z"); + return(a); +} + +def FillFromLeft(mat,p,z) { + local m,n,i,j,aa; + m = Length(mat); n = Length(mat[0]); + aa = NewMatrix(m,n+p); + for (i=0; i<m; i++) { + for (j=0; j<p; j++) { + aa[i,j] = z; /* zero */ + } + for (j=0; j<n; j++) { + aa[i,j+p] = mat[i,j]; + } + } + return(aa); +} + +def FillFromRight(mat,p,z) { + local m,n,i,j,aa; + m = Length(mat); n = Length(mat[0]); + aa = NewMatrix(m,n+p); + for (i=0; i<m; i++) { + for (j=n; j<n+p; j++) { + aa[i,j] = z; /* zero */ + } + for (j=0; j<n; j++) { + aa[i,j] = mat[i,j]; + } + } + return(aa); +} + +def test23() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; + Sweyl("x1,x2,x3",[w]); + d2 = [[Dx1^2-Dx2*h] , [-Dx1*Dx2+Dx3*h] , [Dx2^2-Dx1*Dx3] ]; + d1 = [[-Dx2, -Dx1, -h],[Dx3,Dx2,Dx1]]; + LL = x1*Dx1 + 2*x2*Dx2+3*x3*Dx3; + /* It is exact for LL = Dx1 + 2*Dx2+3*Dx3; */ + u1 = [[LL+4*h^2,Poly("0")],[Poly("0"),LL+5*h^2]]; + u2 = [[LL+2*h^2,Poly("0"),Poly("0")], + [Poly("0"),LL+3*h^2,Poly("0")], + [Poly("0"),Poly("0"),LL+4*h^2]]; + u3 = [[LL]]; + Println("Checking if it is a double complex. "); + Println("u^2 d^2 - d^2 u^3"); + sm1_pmat(u2*d2 - d2*u3); + Println("u^1 d^1 - d^1 u^2"); + sm1_pmat(u1*d1 - d1*u2); + aa = [ + Join(u3,d2), + Join(FillFromLeft(u2,1,Poly("0"))-FillFromRight(d2,3,Poly("0")), + FillFromLeft(d1,1,Poly("0"))), + FillFromLeft(u1,3,Poly("0"))-FillFromRight(d1,2,Poly("0")) + ]; + Println([ aa[1]*aa[0], aa[2]*aa[1] ]); + r= IsExact_h(aa,[x1,x2,x3]); + Println(r); + /* sm1_pmat(aa); */ + return(aa); +} + + +def test24() { + local Res, Eqs, ww,a; + ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; + Println("Example of V-minimal <> minimal "); + Sweyl("x,y", [ww]); + Eqs = [Dx-(x*Dx+y*Dy), + Dy-(x*Dx+y*Dy)]; + sm1(" Eqs dehomogenize /Eqs set"); + Res = Sminimal(Eqs); + Sweyl("x,y", [ww]); + a = Reparse(Res[0]); + sm1_pmat(a); + Println("Initial of the complex is "); + sm1_pmat( Sinit_w(a,ww) ); + return(Res); +} + +def test24b() { + local Res, Eqs, ww ; + ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; + Println("Construction of minimal "); + Sweyl("x,y", [ww]); + Eqs = [Dx-(x*Dx+y*Dy), + Dy-(x*Dx+y*Dy)]; + sm1(" Eqs dehomogenize /Eqs set"); + Res = Sminimal(Eqs,["Sordinary"]); + sm1_pmat(Res[0]); + return(Res); +} + +def test25() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, + "x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; + ans2 = GKZ([[1,1,1,1,1,1], + [0,0,0,1,1,1], + [0,1,0,0,1,0], + [0,0,1,0,0,1]],[0,0,0,0]);; + Sweyl("x1,x2,x3,x4,x5,x6",[w]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); +} + +def test25b() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, + "x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; + ans2 = GKZ([[1,1,1,1,1,1], + [0,0,0,1,1,1], + [0,1,0,0,1,0], + [0,0,1,0,0,1]],[0,0,0,0]); + Sweyl("x1,x2,x3,x4,x5,x6",[w]); + ans2 = ans2[0]; + sm1(" ans2 rest rest rest rest /ans2 set "); + Println(ans2); /* Generators of the toric ideal */ + ans2 = ReParse(ans2); + a = Sminimal(ans2); +} + + +