===================================================================
RCS file: /home/cvs/OpenXM/src/k097/lib/minimal/minimal-test.k,v
retrieving revision 1.18
retrieving revision 1.22
diff -u -p -r1.18 -r1.22
--- OpenXM/src/k097/lib/minimal/minimal-test.k	2000/08/21 07:45:22	1.18
+++ OpenXM/src/k097/lib/minimal/minimal-test.k	2000/08/30 04:07:56	1.22
@@ -1,4 +1,4 @@
-/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.17 2000/08/10 02:59:08 takayama Exp $ */
+/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.21 2000/08/24 00:48:58 takayama Exp $ */
 load["minimal.k"];
 def sm1_resol1(p) {
   sm1(" p resol1 /FunctionValue set ");
@@ -342,15 +342,15 @@ def test21b() {
   Println("The dimensions of linear spaces -----");
   /* sss is the SgetShifts of the Schreyer resol. */
   sss=[    [    0 ]  , [    2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ]  , [    1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ]  , [    1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ]  , [    3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ]  , [    2 , 3 ]  ] ;
-  maxR = 2; /* Maximal root of the b-function. */
+  maxR = 3; /* Maximal root of the b-function. */
   n = Length(sss);
   euler = 0;
   for (i=0; i<n; i++) {
     ttt = sss[i];
     ans = 0;
     for (j=0; j<Length(ttt); j++) {
-      p = ttt[j] + maxR + 3; /* degree */
-      if (p >= 0) {
+      p = -ttt[j] + maxR + 3; /* degree */
+      if (p-maxR >= 0) {
         ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1));
         /* Add the number of monomials */
       }
@@ -366,15 +366,15 @@ def test21c() {
   Println("The dimensions of linear spaces -----");
   /* sss is the SgetShifts of the minimal resol. */
   sss= [    [    0 ]  , [    2 , 2 , 2 , 2 , 2 , 2 , 2 ]  , [    1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ]  , [    1 , 3 , 4 , 6 ]  ];
-  maxR = 2; /* Maximal root of the b-function. */
+  maxR = 3; /* Maximal root of the b-function. */
   n = Length(sss);
   euler = 0;
   for (i=0; i<n; i++) {
     ttt = sss[i];
     ans = 0;
     for (j=0; j<Length(ttt); j++) {
-      p = ttt[j] + maxR + 3; /* degree */
-      if (p >= 0) {
+      p = -ttt[j] + maxR + 3; /* degree */
+      if (p-maxR >= 0) {
         ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1));
         /* Add the number of monomials */
       }
@@ -448,6 +448,7 @@ def test23() {
   Println([ aa[1]*aa[0], aa[2]*aa[1] ]);
   r= IsExact_h(aa,[x1,x2,x3]);
   Println(r);
+  test_if_v_strict(aa,w,"x1,x2,x3");
   /* sm1_pmat(aa); */
   return(aa);
 }
@@ -492,6 +493,21 @@ def test25() {
               [0,0,1,0,0,1]],[0,0,0,0]);;
   Sweyl("x1,x2,x3,x4,x5,x6",[w]);
   ans2 = ReParse(ans2[0]);
+  a = Sminimal(ans2);
+}
+
+def test25b() {
+  w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1,
+       "x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1];
+  ans2 = GKZ([[1,1,1,1,1,1],
+              [0,0,0,1,1,1],
+              [0,1,0,0,1,0],
+              [0,0,1,0,0,1]],[0,0,0,0]);
+  Sweyl("x1,x2,x3,x4,x5,x6",[w]);
+  ans2 = ans2[0];
+  sm1(" ans2 rest rest rest rest /ans2 set ");
+  Println(ans2);  /* Generators of the toric ideal */
+  ans2 = ReParse(ans2);
   a = Sminimal(ans2);
 }