=================================================================== RCS file: /home/cvs/OpenXM/src/k097/lib/minimal/minimal-test.k,v retrieving revision 1.5 retrieving revision 1.17 diff -u -p -r1.5 -r1.17 --- OpenXM/src/k097/lib/minimal/minimal-test.k 2000/06/15 07:38:35 1.5 +++ OpenXM/src/k097/lib/minimal/minimal-test.k 2000/08/10 02:59:08 1.17 @@ -1,86 +1,9 @@ -/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.4 2000/06/14 07:44:05 takayama Exp $ */ +/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.16 2000/08/09 03:45:27 takayama Exp $ */ load["minimal.k"]; -def test5() { - local a,b,c,cc,v; - a = Sannfs3_laScala2("x^3-y^2*z^2"); - b = a[0]; - v = [x,y,z]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - Println("-----------------------------------"); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(a); -} -def test6() { - local a,b,c,cc,v; - a = Sannfs3("x^3-y^2*z^2"); - b = a[0]; - v = [x,y,z]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - Println("-------ker = im for minimal ?---------------------"); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - Println("------ ker=im for Schreyer ?------------------"); - b = a[3]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(a); -} - -/* May 23, Tue */ -def test7() { - local a,b,c,cc,v; - a = Sannfs3_laScala2("x^3-y^2*z^2"); - b = a[0]; - v = [x,y,z]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - Println("-------ker = im for minimal ?---------------------"); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - Println("------ ker=im for Schreyer ?------------------"); - b = a[3]; - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(a); -} - def sm1_resol1(p) { sm1(" p resol1 /FunctionValue set "); } - def test8() { local p,pp,ans,b,c,cc,ww,ww2; f = "x^3-y^2*z^2"; @@ -118,96 +41,6 @@ def test8() { SisComplex(a): */ -def test8a() { - local p,pp,ans,b,c,cc,ww, ans_all; - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - /* Removed "x",1, ... ===> It causes an error. I do not know the reason.*/ - Sweyl("x,y,z",ww); - pp = Map(p,"Spoly"); - /* return(pp); */ - /* pp = - [y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 , - 2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ] - */ - ans_all = Sschreyer(pp); - ans = ans_all[0]; - /* ans = sm1_resol1([pp,"x,y,z",ww]); */ - /* Schreyer is in ans. */ - - v = [x,y,z]; - b = ans; - Println("------ ker=im for Schreyer ?----- wrong method!!!-----------"); - c = Skernel(b[0],v); - c = c[0]; - sm1_pmat([c,b[1],v]); - cc = sm1_res_div(c,b[1],v); - sm1_pmat(sm1_gb(cc,v)); - c = Skernel(b[1],v); - c = c[0]; - cc = sm1_res_div(c,b[2],v); - sm1_pmat(sm1_gb(cc,v)); - return(ans); -} - -/* Comparing two constructions */ -def test9() { - local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2; - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - Sweyl("x,y,z",ww2); - pp = Map(p,"Spoly"); - ans = sm1_resol1([pp,"x,y,z",ww2]); - - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - Sweyl("x,y,z",ww); - pp = Map(p,"Spoly"); - ans_all = Sschreyer(pp); - ans2 = ans_all[0]; - - return([ans,ans2]); - -} - -/* Check if the complex by Sschreyer() is exact or not in our example? */ -def test10() { - local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2, r; - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - Sweyl("x,y,z",ww2); - pp = Map(p,"Spoly"); - ans = sm1_resol1([pp,"x,y,z",ww2]); - - f = "x^3-y^2*z^2"; - p = Sannfs(f,"x,y,z"); - sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); - ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - Sweyl("x,y,z",ww); - pp = Map(p,"Spoly"); - ans_all = Sschreyer(pp); /* Schreyer by LaScala-Stillman */ - ans2 = ans_all[0]; - - sm1(" /gb.verbose 1 def "); - - ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; - Sweyl("x,y,z",ww2); - ans2 = ReParse(ans2); - r= IsExact_h(ans2,[x,y,z]); - Print(r); - - return([r,[ans,ans2]]); - -} - def test11() { local a; a = test_ann3("x^3-y^2*z^2"); @@ -238,7 +71,7 @@ It returns the following resolution in 1.5 hours. Jun */ def test_ann3(f) { local a,v,ww2,ans2; - a = Sannfs3_laScala2(f); + a = Sannfs3(f); ans2 = a[0]; v = [x,y,z]; ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; @@ -246,7 +79,7 @@ def test_ann3(f) { ans2 = ReParse(ans2); r= IsExact_h(ans2,[x,y,z]); Println(r); - return([r,ans2]); + return([r,ans2,a]); } def test11a() { local a,v,ww2,ans2; @@ -305,7 +138,6 @@ def test12() { ans2 = ReParse(ans2); /* DO NOT FORGET! */ r= IsExact_h(ans2,[x,y,z]); Println(r); - Println("It may stop by non-exact statement. The code of Sminimal_v (non-LaScala-Stillman contains bugs."); return([r,ans2]); } @@ -324,7 +156,9 @@ def test13() { def test14() { Println("test14 try to construct a minimal free resolution"); Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); - ans2 = GKZ([[1,2,3]],[0]); /* It stops by the strategy error. */ + ans2 = GKZ([[1,2,3]],[0]); + /* It stops by the strategy error. + July 26, 2000. It works fine after fixing a bug in resol.c */ ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; Sweyl("x1,x2,x3",ww2); ans2 = ReParse(ans2[0]); @@ -339,17 +173,23 @@ def test14a() { ans2 = [x1*Dx1+2*x2*Dx2+3*x3*Dx3 , Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , Dx2^2-Dx1*Dx3 ]; ans2 = ReParse(ans2); - return(Sminimal(ans2,"homogenized")); + return(Sminimal(ans2,["homogenized"])); } def test15() { Println("test15 try to construct a minimal free resolution"); Println("of a GKZ system [[1,2,3]] by the order filt. 6/12, 2000."); ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; - Sweyl("x1,x2,x3",ww2); ans2 = GKZ([[1,2,3]],[0]); + Sweyl("x1,x2,x3",ww2); ans2 = ReParse(ans2[0]); - return(Sminimal(ans2)); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + Sweyl("x1,x2,x3"); + ans3 = ReParse(a[0]); + r= IsExact_h(ans3,[x1,x2,x3]); + Println(r); + return(a); } def test15b() { @@ -359,9 +199,24 @@ def test15b() { Sweyl("x1,x2,x3",ww2); ans2 = [Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , Dx2^2-Dx1*Dx3 ]; ans2 = ReParse(ans2); - return(Sminimal(ans2,"homogenized")); + return(Sminimal(ans2,["homogenized"])); } +def test15c() { + Println("test15c try to construct a minimal free resolution "); + Println("of a GKZ system [[1,2,3]] by -1,1"); + ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]]; + ans2 = GKZ([[1,2,3]],[0]); + Sweyl("x1,x2,x3",ww2); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + Sweyl("x1,x2,x3"); + ans3 = ReParse(a[0]); + r= IsExact_h(ans3,[x1,x2,x3]); + Println(r); + return(a); +} def test16() { Println("test16 try to construct a minimal free resolution"); Println("of a GKZ system [[1,2,3,5]] by the order filt. 6/12, 2000."); @@ -385,6 +240,227 @@ def test16b() { return(Sminimal(ans3)); } - + +def test17() { + a=Sannfs3("x^3-y^2*z^2"); + b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; + Sweyl("x,y,z",[w]); b = Reparse(b); + c=Sinit_w(b,w); + Println("Resolution (b)----"); + sm1_pmat(b); + Println("Initial (c)----"); + sm1_pmat(c); + Println(IsExact_h(c,"x,y,z")); +} + +def test_if_v_strict(resmat,w,v) { + local b,c,g; + Sweyl(v,[w]); b = Reparse(resmat); + Println("Degree shifts "); + Println(SgetShifts(b,w)); + c=Sinit_w(b,w); + Println("Resolution (b)----"); + sm1_pmat(b); + Println("Initial (c)----"); + sm1_pmat(c); + Println("Exactness of the resolution ---"); + Println(IsExact_h(b,v)); + Println("Exactness of the initial complex.---"); + Println(IsExact_h(c,v)); + g = Sinvolutive(b[0],w); + /* Println("Involutive basis ---"); + sm1_pmat(g); + Println(Sinvolutive(c[0],w)); + sm1(" /gb.verbose 1 def "); */ + Println("Is same ideal?"); + Println(IsSameIdeal_h(g,c[0],v)); +} +def test17b() { + a=Sannfs3("x^3-y^2*z^2"); + b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; + test_if_v_strict(b,w,"x,y,z"); + return(a); +} + +def test18() { + a=Sannfs2("x^3-y^2"); + b=a[0]; w = ["x",-1,"y",-1,"Dx",1,"Dy",1]; + test_if_v_strict(b,w,"x,y"); + return(a); +} + +def test19() { + Println("test19 try to construct a minimal free resolution and check if it is v-strict."); + Println("of a GKZ system [[1,2,3]] by -1,1"); + ww2 = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; + ans2 = GKZ([[1,2,3]],[0]); + Sweyl("x1,x2,x3",[ww2]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + b = a[0]; + test_if_v_strict(b,ww2,"x1,x2,x3"); + return(a); +} + +/* Need more than 100M memory. 291, 845, 1266, 1116, 592 : Schreyer frame. + I've not yet tried to finish the computation. */ +def test20() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; + ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[0,0]); + Sweyl("x1,x2,x3,x4",[w]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + b = a[0]; + /* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ + return(a); +} +def test20b() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; + ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[1,2]); + Sweyl("x1,x2,x3,x4",[w]); + ans2 = ReParse(ans2[0]); + a = Sminimal(ans2); + Println("Minimal Resolution is "); sm1_pmat(a[0]); + b = a[0]; + /* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ + return(a); +} + +def test21() { + a=Sannfs3("x^3-y^2*z^2+y^2+z^2"); + /* a=Sannfs3("x^3-y-z"); for debug */ + b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; + test_if_v_strict(b,w,"x,y,z"); + Println("Degree shifts of Schreyer resolution ----"); + Println(SgetShifts(Reparse(a[4,0]),w)); + return(a); +} +def test21b() { + local i,j,n,sss, maxR, ttt,ans,p; + Println("The dimensions of linear spaces -----"); + /* sss is the SgetShifts of the Schreyer resol. */ + sss= + [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] , + [ -1, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 ] , + [ 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3, 2, 2, 1, 4, 3, 3, 2, 0, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 3, 3, 4 ] , + [ 1, 0, 2, 3, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 0, 3, 1, 3, 2, 3, 4 ] , + [ 1, 1 ] ] ; + maxR = 2; /* Maximal root of the b-function. */ + n = Length(sss); + for (i=0; i<n; i++) { + ttt = sss[i]; + ans = 0; + for (j=0; j<Length(ttt); j++) { + p = ttt[j] + maxR + 3; /* degree */ + if (p >= 0) { + ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); + /* Add the number of monomials */ + } + } + Print(ans); Print(", "); + } + Println(" "); +} +def test22() { + a=Sannfs3("x^3+y^3+z^3"); + b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; + test_if_v_strict(b,w,"x,y,z"); + return(a); +} + +def FillFromLeft(mat,p,z) { + local m,n,i,j,aa; + m = Length(mat); n = Length(mat[0]); + aa = NewMatrix(m,n+p); + for (i=0; i<m; i++) { + for (j=0; j<p; j++) { + aa[i,j] = z; /* zero */ + } + for (j=0; j<n; j++) { + aa[i,j+p] = mat[i,j]; + } + } + return(aa); +} + +def FillFromRight(mat,p,z) { + local m,n,i,j,aa; + m = Length(mat); n = Length(mat[0]); + aa = NewMatrix(m,n+p); + for (i=0; i<m; i++) { + for (j=n; j<n+p; j++) { + aa[i,j] = z; /* zero */ + } + for (j=0; j<n; j++) { + aa[i,j] = mat[i,j]; + } + } + return(aa); +} + +def test23() { + w = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; + Sweyl("x1,x2,x3",[w]); + d2 = [[Dx1^2-Dx2*h] , [-Dx1*Dx2+Dx3*h] , [Dx2^2-Dx1*Dx3] ]; + d1 = [[-Dx2, -Dx1, -h],[Dx3,Dx2,Dx1]]; + LL = x1*Dx1 + 2*x2*Dx2+3*x3*Dx3; + /* It is exact for LL = Dx1 + 2*Dx2+3*Dx3; */ + u1 = [[LL+4*h^2,Poly("0")],[Poly("0"),LL+5*h^2]]; + u2 = [[LL+2*h^2,Poly("0"),Poly("0")], + [Poly("0"),LL+3*h^2,Poly("0")], + [Poly("0"),Poly("0"),LL+4*h^2]]; + u3 = [[LL]]; + Println("Checking if it is a double complex. "); + Println("u^2 d^2 - d^2 u^3"); + sm1_pmat(u2*d2 - d2*u3); + Println("u^1 d^1 - d^1 u^2"); + sm1_pmat(u1*d1 - d1*u2); + aa = [ + Join(u3,d2), + Join(FillFromLeft(u2,1,Poly("0"))-FillFromRight(d2,3,Poly("0")), + FillFromLeft(d1,1,Poly("0"))), + FillFromLeft(u1,3,Poly("0"))-FillFromRight(d1,2,Poly("0")) + ]; + Println([ aa[1]*aa[0], aa[2]*aa[1] ]); + r= IsExact_h(aa,[x1,x2,x3]); + Println(r); + /* sm1_pmat(aa); */ + return(aa); +} + + +def test24() { + local Res, Eqs, ww,a; + ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; + Println("Example of V-minimal <> minimal "); + Sweyl("x,y", [ww]); + Eqs = [Dx-(x*Dx+y*Dy), + Dy-(x*Dx+y*Dy)]; + sm1(" Eqs dehomogenize /Eqs set"); + Res = Sminimal(Eqs); + Sweyl("x,y", [ww]); + a = Reparse(Res[0]); + sm1_pmat(a); + Println("Initial of the complex is "); + sm1_pmat( Sinit_w(a,ww) ); + return(Res); +} + +def test24b() { + local Res, Eqs, ww ; + ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; + Println("Construction of minimal "); + Sweyl("x,y", [ww]); + Eqs = [Dx-(x*Dx+y*Dy), + Dy-(x*Dx+y*Dy)]; + sm1(" Eqs dehomogenize /Eqs set"); + Res = Sminimal(Eqs,["Sordinary"]); + sm1_pmat(Res[0]); + return(Res); +} + +