| version 1.17, 2000/08/10 02:59:08 |
version 1.23, 2000/12/10 03:12:20 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.16 2000/08/09 03:45:27 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.22 2000/08/30 04:07:56 takayama Exp $ */ |
| load["minimal.k"]; |
load["lib/minimal/minimal.k"]; |
| def sm1_resol1(p) { |
def sm1_resol1(p) { |
| sm1(" p resol1 /FunctionValue set "); |
sm1(" p resol1 /FunctionValue set "); |
| } |
} |
|
|
| b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
| test_if_v_strict(b,w,"x,y,z"); |
test_if_v_strict(b,w,"x,y,z"); |
| Println("Degree shifts of Schreyer resolution ----"); |
Println("Degree shifts of Schreyer resolution ----"); |
| Println(SgetShifts(Reparse(a[4,0]),w)); |
Println(SgetShifts(Reparse(a[3]),w)); |
| return(a); |
return(a); |
| } |
} |
| def test21b() { |
def test21b() { |
| local i,j,n,sss, maxR, ttt,ans,p; |
local i,j,n,sss, maxR, ttt,ans,p, euler; |
| Println("The dimensions of linear spaces -----"); |
Println("The dimensions of linear spaces -----"); |
| /* sss is the SgetShifts of the Schreyer resol. */ |
/* sss is the SgetShifts of the Schreyer resol. */ |
| sss= |
sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; |
| [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] , |
maxR = 3; /* Maximal root of the b-function. */ |
| [ -1, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 ] , |
|
| [ 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3, 2, 2, 1, 4, 3, 3, 2, 0, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 3, 3, 4 ] , |
|
| [ 1, 0, 2, 3, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 0, 3, 1, 3, 2, 3, 4 ] , |
|
| [ 1, 1 ] ] ; |
|
| maxR = 2; /* Maximal root of the b-function. */ |
|
| n = Length(sss); |
n = Length(sss); |
| |
euler = 0; |
| for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
| ttt = sss[i]; |
ttt = sss[i]; |
| ans = 0; |
ans = 0; |
| for (j=0; j<Length(ttt); j++) { |
for (j=0; j<Length(ttt); j++) { |
| p = ttt[j] + maxR + 3; /* degree */ |
p = -ttt[j] + maxR + 3; /* degree */ |
| if (p >= 0) { |
if (p-maxR >= 0) { |
| ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
| /* Add the number of monomials */ |
/* Add the number of monomials */ |
| } |
} |
| } |
} |
| Print(ans); Print(", "); |
Print(ans); Print(", "); |
| |
euler = euler+(-1)^i*ans; |
| } |
} |
| Println(" "); |
Println(" "); |
| |
Print("Euler number is : "); Println(euler); |
| } |
} |
| |
def test21c() { |
| |
local i,j,n,sss, maxR, ttt,ans,p, euler; |
| |
Println("The dimensions of linear spaces -----"); |
| |
/* sss is the SgetShifts of the minimal resol. */ |
| |
sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; |
| |
maxR = 3; /* Maximal root of the b-function. */ |
| |
n = Length(sss); |
| |
euler = 0; |
| |
for (i=0; i<n; i++) { |
| |
ttt = sss[i]; |
| |
ans = 0; |
| |
for (j=0; j<Length(ttt); j++) { |
| |
p = -ttt[j] + maxR + 3; /* degree */ |
| |
if (p-maxR >= 0) { |
| |
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
| |
/* Add the number of monomials */ |
| |
} |
| |
} |
| |
Print(ans); Print(", "); |
| |
euler = euler+(-1)^i*ans; |
| |
} |
| |
Println(" "); |
| |
Print("Euler number is : "); Println(euler); |
| |
} |
| def test22() { |
def test22() { |
| a=Sannfs3("x^3+y^3+z^3"); |
a=Sannfs3("x^3+y^3+z^3"); |
| b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
|
|
| Println([ aa[1]*aa[0], aa[2]*aa[1] ]); |
Println([ aa[1]*aa[0], aa[2]*aa[1] ]); |
| r= IsExact_h(aa,[x1,x2,x3]); |
r= IsExact_h(aa,[x1,x2,x3]); |
| Println(r); |
Println(r); |
| |
test_if_v_strict(aa,w,"x1,x2,x3"); |
| /* sm1_pmat(aa); */ |
/* sm1_pmat(aa); */ |
| return(aa); |
return(aa); |
| } |
} |
|
|
| return(Res); |
return(Res); |
| } |
} |
| |
|
| |
def test25() { |
| |
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
| |
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
| |
ans2 = GKZ([[1,1,1,1,1,1], |
| |
[0,0,0,1,1,1], |
| |
[0,1,0,0,1,0], |
| |
[0,0,1,0,0,1]],[0,0,0,0]);; |
| |
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
| |
ans2 = ReParse(ans2[0]); |
| |
a = Sminimal(ans2); |
| |
} |
| |
|
| |
def test25b() { |
| |
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
| |
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
| |
ans2 = GKZ([[1,1,1,1,1,1], |
| |
[0,0,0,1,1,1], |
| |
[0,1,0,0,1,0], |
| |
[0,0,1,0,0,1]],[0,0,0,0]); |
| |
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
| |
ans2 = ans2[0]; |
| |
sm1(" ans2 rest rest rest rest /ans2 set "); |
| |
Println(ans2); /* Generators of the toric ideal */ |
| |
ans2 = ReParse(ans2); |
| |
a = Sminimal(ans2); |
| |
} |
| |
|
| |
|
| |
|