Return to minimal-test.k CVS log | Up to [local] / OpenXM / src / k097 / lib / minimal |
version 1.18, 2000/08/21 07:45:22 | version 1.22, 2000/08/30 04:07:56 | ||
---|---|---|---|
|
|
||
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.17 2000/08/10 02:59:08 takayama Exp $ */ | /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.21 2000/08/24 00:48:58 takayama Exp $ */ | ||
load["minimal.k"]; | load["minimal.k"]; | ||
def sm1_resol1(p) { | def sm1_resol1(p) { | ||
sm1(" p resol1 /FunctionValue set "); | sm1(" p resol1 /FunctionValue set "); | ||
|
|
||
Println("The dimensions of linear spaces -----"); | Println("The dimensions of linear spaces -----"); | ||
/* sss is the SgetShifts of the Schreyer resol. */ | /* sss is the SgetShifts of the Schreyer resol. */ | ||
sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; | sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; | ||
maxR = 2; /* Maximal root of the b-function. */ | maxR = 3; /* Maximal root of the b-function. */ | ||
n = Length(sss); | n = Length(sss); | ||
euler = 0; | euler = 0; | ||
for (i=0; i<n; i++) { | for (i=0; i<n; i++) { | ||
ttt = sss[i]; | ttt = sss[i]; | ||
ans = 0; | ans = 0; | ||
for (j=0; j<Length(ttt); j++) { | for (j=0; j<Length(ttt); j++) { | ||
p = ttt[j] + maxR + 3; /* degree */ | p = -ttt[j] + maxR + 3; /* degree */ | ||
if (p >= 0) { | if (p-maxR >= 0) { | ||
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); | ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); | ||
/* Add the number of monomials */ | /* Add the number of monomials */ | ||
} | } | ||
|
|
||
Println("The dimensions of linear spaces -----"); | Println("The dimensions of linear spaces -----"); | ||
/* sss is the SgetShifts of the minimal resol. */ | /* sss is the SgetShifts of the minimal resol. */ | ||
sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; | sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; | ||
maxR = 2; /* Maximal root of the b-function. */ | maxR = 3; /* Maximal root of the b-function. */ | ||
n = Length(sss); | n = Length(sss); | ||
euler = 0; | euler = 0; | ||
for (i=0; i<n; i++) { | for (i=0; i<n; i++) { | ||
ttt = sss[i]; | ttt = sss[i]; | ||
ans = 0; | ans = 0; | ||
for (j=0; j<Length(ttt); j++) { | for (j=0; j<Length(ttt); j++) { | ||
p = ttt[j] + maxR + 3; /* degree */ | p = -ttt[j] + maxR + 3; /* degree */ | ||
if (p >= 0) { | if (p-maxR >= 0) { | ||
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); | ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); | ||
/* Add the number of monomials */ | /* Add the number of monomials */ | ||
} | } | ||
|
|
||
Println([ aa[1]*aa[0], aa[2]*aa[1] ]); | Println([ aa[1]*aa[0], aa[2]*aa[1] ]); | ||
r= IsExact_h(aa,[x1,x2,x3]); | r= IsExact_h(aa,[x1,x2,x3]); | ||
Println(r); | Println(r); | ||
test_if_v_strict(aa,w,"x1,x2,x3"); | |||
/* sm1_pmat(aa); */ | /* sm1_pmat(aa); */ | ||
return(aa); | return(aa); | ||
} | } | ||
|
|
||
[0,0,1,0,0,1]],[0,0,0,0]);; | [0,0,1,0,0,1]],[0,0,0,0]);; | ||
Sweyl("x1,x2,x3,x4,x5,x6",[w]); | Sweyl("x1,x2,x3,x4,x5,x6",[w]); | ||
ans2 = ReParse(ans2[0]); | ans2 = ReParse(ans2[0]); | ||
a = Sminimal(ans2); | |||
} | |||
def test25b() { | |||
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, | |||
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; | |||
ans2 = GKZ([[1,1,1,1,1,1], | |||
[0,0,0,1,1,1], | |||
[0,1,0,0,1,0], | |||
[0,0,1,0,0,1]],[0,0,0,0]); | |||
Sweyl("x1,x2,x3,x4,x5,x6",[w]); | |||
ans2 = ans2[0]; | |||
sm1(" ans2 rest rest rest rest /ans2 set "); | |||
Println(ans2); /* Generators of the toric ideal */ | |||
ans2 = ReParse(ans2); | |||
a = Sminimal(ans2); | a = Sminimal(ans2); | ||
} | } | ||