| version 1.14, 2000/08/02 04:26:36 |
version 1.21, 2000/08/24 00:48:58 |
|
|
| /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.13 2000/08/02 03:23:36 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.20 2000/08/22 05:34:06 takayama Exp $ */ |
| load["minimal.k"]; |
load["minimal.k"]; |
| def sm1_resol1(p) { |
def sm1_resol1(p) { |
| sm1(" p resol1 /FunctionValue set "); |
sm1(" p resol1 /FunctionValue set "); |
|
|
| b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
| test_if_v_strict(b,w,"x,y,z"); |
test_if_v_strict(b,w,"x,y,z"); |
| Println("Degree shifts of Schreyer resolution ----"); |
Println("Degree shifts of Schreyer resolution ----"); |
| Println(SgetShifts(Reparse(a[4,0]),w)); |
Println(SgetShifts(Reparse(a[3]),w)); |
| return(a); |
return(a); |
| } |
} |
| |
def test21b() { |
| |
local i,j,n,sss, maxR, ttt,ans,p, euler; |
| |
Println("The dimensions of linear spaces -----"); |
| |
/* sss is the SgetShifts of the Schreyer resol. */ |
| |
sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; |
| |
maxR = 3; /* Maximal root of the b-function. */ |
| |
n = Length(sss); |
| |
euler = 0; |
| |
for (i=0; i<n; i++) { |
| |
ttt = sss[i]; |
| |
ans = 0; |
| |
for (j=0; j<Length(ttt); j++) { |
| |
p = -ttt[j] + maxR + 3; /* degree */ |
| |
if (p-maxR >= 0) { |
| |
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
| |
/* Add the number of monomials */ |
| |
} |
| |
} |
| |
Print(ans); Print(", "); |
| |
euler = euler+(-1)^i*ans; |
| |
} |
| |
Println(" "); |
| |
Print("Euler number is : "); Println(euler); |
| |
} |
| |
def test21c() { |
| |
local i,j,n,sss, maxR, ttt,ans,p, euler; |
| |
Println("The dimensions of linear spaces -----"); |
| |
/* sss is the SgetShifts of the minimal resol. */ |
| |
sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; |
| |
maxR = 3; /* Maximal root of the b-function. */ |
| |
n = Length(sss); |
| |
euler = 0; |
| |
for (i=0; i<n; i++) { |
| |
ttt = sss[i]; |
| |
ans = 0; |
| |
for (j=0; j<Length(ttt); j++) { |
| |
p = -ttt[j] + maxR + 3; /* degree */ |
| |
if (p-maxR >= 0) { |
| |
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
| |
/* Add the number of monomials */ |
| |
} |
| |
} |
| |
Print(ans); Print(", "); |
| |
euler = euler+(-1)^i*ans; |
| |
} |
| |
Println(" "); |
| |
Print("Euler number is : "); Println(euler); |
| |
} |
| def test22() { |
def test22() { |
| a=Sannfs3("x^3+y^3+z^3"); |
a=Sannfs3("x^3+y^3+z^3"); |
| b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
| test_if_v_strict(b,w,"x,y,z"); |
test_if_v_strict(b,w,"x,y,z"); |
| return(a); |
return(a); |
| } |
} |
| |
|
| |
def FillFromLeft(mat,p,z) { |
| |
local m,n,i,j,aa; |
| |
m = Length(mat); n = Length(mat[0]); |
| |
aa = NewMatrix(m,n+p); |
| |
for (i=0; i<m; i++) { |
| |
for (j=0; j<p; j++) { |
| |
aa[i,j] = z; /* zero */ |
| |
} |
| |
for (j=0; j<n; j++) { |
| |
aa[i,j+p] = mat[i,j]; |
| |
} |
| |
} |
| |
return(aa); |
| |
} |
| |
|
| |
def FillFromRight(mat,p,z) { |
| |
local m,n,i,j,aa; |
| |
m = Length(mat); n = Length(mat[0]); |
| |
aa = NewMatrix(m,n+p); |
| |
for (i=0; i<m; i++) { |
| |
for (j=n; j<n+p; j++) { |
| |
aa[i,j] = z; /* zero */ |
| |
} |
| |
for (j=0; j<n; j++) { |
| |
aa[i,j] = mat[i,j]; |
| |
} |
| |
} |
| |
return(aa); |
| |
} |
| |
|
| |
def test23() { |
| |
w = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; |
| |
Sweyl("x1,x2,x3",[w]); |
| |
d2 = [[Dx1^2-Dx2*h] , [-Dx1*Dx2+Dx3*h] , [Dx2^2-Dx1*Dx3] ]; |
| |
d1 = [[-Dx2, -Dx1, -h],[Dx3,Dx2,Dx1]]; |
| |
LL = x1*Dx1 + 2*x2*Dx2+3*x3*Dx3; |
| |
/* It is exact for LL = Dx1 + 2*Dx2+3*Dx3; */ |
| |
u1 = [[LL+4*h^2,Poly("0")],[Poly("0"),LL+5*h^2]]; |
| |
u2 = [[LL+2*h^2,Poly("0"),Poly("0")], |
| |
[Poly("0"),LL+3*h^2,Poly("0")], |
| |
[Poly("0"),Poly("0"),LL+4*h^2]]; |
| |
u3 = [[LL]]; |
| |
Println("Checking if it is a double complex. "); |
| |
Println("u^2 d^2 - d^2 u^3"); |
| |
sm1_pmat(u2*d2 - d2*u3); |
| |
Println("u^1 d^1 - d^1 u^2"); |
| |
sm1_pmat(u1*d1 - d1*u2); |
| |
aa = [ |
| |
Join(u3,d2), |
| |
Join(FillFromLeft(u2,1,Poly("0"))-FillFromRight(d2,3,Poly("0")), |
| |
FillFromLeft(d1,1,Poly("0"))), |
| |
FillFromLeft(u1,3,Poly("0"))-FillFromRight(d1,2,Poly("0")) |
| |
]; |
| |
Println([ aa[1]*aa[0], aa[2]*aa[1] ]); |
| |
r= IsExact_h(aa,[x1,x2,x3]); |
| |
Println(r); |
| |
/* sm1_pmat(aa); */ |
| |
return(aa); |
| |
} |
| |
|
| |
|
| |
def test24() { |
| |
local Res, Eqs, ww,a; |
| |
ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
| |
Println("Example of V-minimal <> minimal "); |
| |
Sweyl("x,y", [ww]); |
| |
Eqs = [Dx-(x*Dx+y*Dy), |
| |
Dy-(x*Dx+y*Dy)]; |
| |
sm1(" Eqs dehomogenize /Eqs set"); |
| |
Res = Sminimal(Eqs); |
| |
Sweyl("x,y", [ww]); |
| |
a = Reparse(Res[0]); |
| |
sm1_pmat(a); |
| |
Println("Initial of the complex is "); |
| |
sm1_pmat( Sinit_w(a,ww) ); |
| |
return(Res); |
| |
} |
| |
|
| |
def test24b() { |
| |
local Res, Eqs, ww ; |
| |
ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
| |
Println("Construction of minimal "); |
| |
Sweyl("x,y", [ww]); |
| |
Eqs = [Dx-(x*Dx+y*Dy), |
| |
Dy-(x*Dx+y*Dy)]; |
| |
sm1(" Eqs dehomogenize /Eqs set"); |
| |
Res = Sminimal(Eqs,["Sordinary"]); |
| |
sm1_pmat(Res[0]); |
| |
return(Res); |
| |
} |
| |
|
| |
def test25() { |
| |
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
| |
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
| |
ans2 = GKZ([[1,1,1,1,1,1], |
| |
[0,0,0,1,1,1], |
| |
[0,1,0,0,1,0], |
| |
[0,0,1,0,0,1]],[0,0,0,0]);; |
| |
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
| |
ans2 = ReParse(ans2[0]); |
| |
a = Sminimal(ans2); |
| |
} |
| |
|
| |
def test25b() { |
| |
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
| |
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
| |
ans2 = GKZ([[1,1,1,1,1,1], |
| |
[0,0,0,1,1,1], |
| |
[0,1,0,0,1,0], |
| |
[0,0,1,0,0,1]],[0,0,0,0]); |
| |
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
| |
ans2 = ans2[0]; |
| |
sm1(" ans2 rest rest rest rest /ans2 set "); |
| |
Println(ans2); /* Generators of the toric ideal */ |
| |
ans2 = ReParse(ans2); |
| |
a = Sminimal(ans2); |
| |
} |
| |
|
| |
|
| |
|