[BACK]Return to minimal-test.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Diff for /OpenXM/src/k097/lib/minimal/minimal-test.k between version 1.16 and 1.20

version 1.16, 2000/08/09 03:45:27 version 1.20, 2000/08/22 05:34:06
Line 1 
Line 1 
 /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.15 2000/08/02 05:14:31 takayama Exp $ */  /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.19 2000/08/22 02:13:51 takayama Exp $ */
 load["minimal.k"];  load["minimal.k"];
 def sm1_resol1(p) {  def sm1_resol1(p) {
   sm1(" p resol1 /FunctionValue set ");    sm1(" p resol1 /FunctionValue set ");
Line 334  def test21() {
Line 334  def test21() {
    b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1];     b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1];
    test_if_v_strict(b,w,"x,y,z");     test_if_v_strict(b,w,"x,y,z");
    Println("Degree shifts of Schreyer resolution ----");     Println("Degree shifts of Schreyer resolution ----");
    Println(SgetShifts(Reparse(a[4,0]),w));     Println(SgetShifts(Reparse(a[3]),w));
    return(a);     return(a);
 }  }
 def test21b() {  def test21b() {
   local i,j,n,sss, maxR, ttt,ans,p;    local i,j,n,sss, maxR, ttt,ans,p, euler;
   Println("The dimensions of linear spaces -----");    Println("The dimensions of linear spaces -----");
   /* sss is the SgetShifts of the Schreyer resol. */    /* sss is the SgetShifts of the Schreyer resol. */
   sss=    sss=[    [    0 ]  , [    2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ]  , [    1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ]  , [    1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ]  , [    3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ]  , [    2 , 3 ]  ] ;
   [[    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ,    maxR = 3; /* Maximal root of the b-function. */
    [ -1, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 ] ,  
    [ 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3, 2, 2, 1, 4, 3, 3, 2, 0, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 3, 3, 4 ] ,  
    [ 1, 0, 2, 3, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 0, 3, 1, 3, 2, 3, 4 ] ,  
    [ 1, 1 ]  ] ;  
    maxR = 2; /* Maximal root of the b-function. */  
   n = Length(sss);    n = Length(sss);
     euler = 0;
   for (i=0; i<n; i++) {    for (i=0; i<n; i++) {
     ttt = sss[i];      ttt = sss[i];
     ans = 0;      ans = 0;
     for (j=0; j<Length(ttt); j++) {      for (j=0; j<Length(ttt); j++) {
       p = ttt[j] + maxR + 3; /* degree */        p = -ttt[j] + maxR + 3; /* degree */
       if (p >= 0) {        if (p-maxR >= 0) {
         ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1));          ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1));
         /* Add the number of monomials */          /* Add the number of monomials */
       }        }
     }      }
     Print(ans); Print(", ");      Print(ans); Print(", ");
       euler = euler+(-1)^i*ans;
   }    }
   Println(" ");    Println(" ");
     Print("Euler number is : "); Println(euler);
 }  }
   def test21c() {
     local i,j,n,sss, maxR, ttt,ans,p, euler;
     Println("The dimensions of linear spaces -----");
     /* sss is the SgetShifts of the minimal resol. */
     sss= [    [    0 ]  , [    2 , 2 , 2 , 2 , 2 , 2 , 2 ]  , [    1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ]  , [    1 , 3 , 4 , 6 ]  ];
     maxR = 3; /* Maximal root of the b-function. */
     n = Length(sss);
     euler = 0;
     for (i=0; i<n; i++) {
       ttt = sss[i];
       ans = 0;
       for (j=0; j<Length(ttt); j++) {
         p = -ttt[j] + maxR + 3; /* degree */
         if (p-maxR >= 0) {
           ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1));
           /* Add the number of monomials */
         }
       }
       Print(ans); Print(", ");
       euler = euler+(-1)^i*ans;
     }
     Println(" ");
     Print("Euler number is : "); Println(euler);
   }
 def test22() {  def test22() {
    a=Sannfs3("x^3+y^3+z^3");     a=Sannfs3("x^3+y^3+z^3");
    b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3];     b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3];
Line 431  def test23() {
Line 453  def test23() {
 }  }
   
   
   def test24() {
     local Res, Eqs, ww,a;
     ww = ["x",-1,"y",-1,"Dx",1,"Dy",1];
     Println("Example of V-minimal <> minimal ");
     Sweyl("x,y", [ww]);
     Eqs = [Dx-(x*Dx+y*Dy),
            Dy-(x*Dx+y*Dy)];
     sm1(" Eqs dehomogenize /Eqs set");
     Res = Sminimal(Eqs);
     Sweyl("x,y", [ww]);
     a = Reparse(Res[0]);
     sm1_pmat(a);
     Println("Initial of the complex is ");
     sm1_pmat( Sinit_w(a,ww) );
     return(Res);
   }
   
   def test24b() {
     local Res, Eqs, ww ;
     ww = ["x",-1,"y",-1,"Dx",1,"Dy",1];
     Println("Construction of minimal ");
     Sweyl("x,y", [ww]);
     Eqs = [Dx-(x*Dx+y*Dy),
            Dy-(x*Dx+y*Dy)];
     sm1(" Eqs dehomogenize /Eqs set");
     Res = Sminimal(Eqs,["Sordinary"]);
     sm1_pmat(Res[0]);
     return(Res);
   }
   
   def test25() {
     w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1,
          "x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1];
     ans2 = GKZ([[1,1,1,1,1,1],
                 [0,0,0,1,1,1],
                 [0,1,0,0,1,0],
                 [0,0,1,0,0,1]],[0,0,0,0]);;
     Sweyl("x1,x2,x3,x4,x5,x6",[w]);
     ans2 = ReParse(ans2[0]);
     a = Sminimal(ans2);
   }
   
   
   

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.20

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>