version 1.17, 2000/08/10 02:59:08 |
version 1.18, 2000/08/21 07:45:22 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.16 2000/08/09 03:45:27 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.17 2000/08/10 02:59:08 takayama Exp $ */ |
load["minimal.k"]; |
load["minimal.k"]; |
def sm1_resol1(p) { |
def sm1_resol1(p) { |
sm1(" p resol1 /FunctionValue set "); |
sm1(" p resol1 /FunctionValue set "); |
|
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
test_if_v_strict(b,w,"x,y,z"); |
test_if_v_strict(b,w,"x,y,z"); |
Println("Degree shifts of Schreyer resolution ----"); |
Println("Degree shifts of Schreyer resolution ----"); |
Println(SgetShifts(Reparse(a[4,0]),w)); |
Println(SgetShifts(Reparse(a[3]),w)); |
return(a); |
return(a); |
} |
} |
def test21b() { |
def test21b() { |
local i,j,n,sss, maxR, ttt,ans,p; |
local i,j,n,sss, maxR, ttt,ans,p, euler; |
Println("The dimensions of linear spaces -----"); |
Println("The dimensions of linear spaces -----"); |
/* sss is the SgetShifts of the Schreyer resol. */ |
/* sss is the SgetShifts of the Schreyer resol. */ |
sss= |
sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; |
[[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] , |
maxR = 2; /* Maximal root of the b-function. */ |
[ -1, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 ] , |
|
[ 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3, 2, 2, 1, 4, 3, 3, 2, 0, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 3, 3, 4 ] , |
|
[ 1, 0, 2, 3, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 0, 3, 1, 3, 2, 3, 4 ] , |
|
[ 1, 1 ] ] ; |
|
maxR = 2; /* Maximal root of the b-function. */ |
|
n = Length(sss); |
n = Length(sss); |
|
euler = 0; |
for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
ttt = sss[i]; |
ttt = sss[i]; |
ans = 0; |
ans = 0; |
|
|
} |
} |
} |
} |
Print(ans); Print(", "); |
Print(ans); Print(", "); |
|
euler = euler+(-1)^i*ans; |
} |
} |
Println(" "); |
Println(" "); |
|
Print("Euler number is : "); Println(euler); |
} |
} |
|
def test21c() { |
|
local i,j,n,sss, maxR, ttt,ans,p, euler; |
|
Println("The dimensions of linear spaces -----"); |
|
/* sss is the SgetShifts of the minimal resol. */ |
|
sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; |
|
maxR = 2; /* Maximal root of the b-function. */ |
|
n = Length(sss); |
|
euler = 0; |
|
for (i=0; i<n; i++) { |
|
ttt = sss[i]; |
|
ans = 0; |
|
for (j=0; j<Length(ttt); j++) { |
|
p = ttt[j] + maxR + 3; /* degree */ |
|
if (p >= 0) { |
|
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
|
/* Add the number of monomials */ |
|
} |
|
} |
|
Print(ans); Print(", "); |
|
euler = euler+(-1)^i*ans; |
|
} |
|
Println(" "); |
|
Print("Euler number is : "); Println(euler); |
|
} |
def test22() { |
def test22() { |
a=Sannfs3("x^3+y^3+z^3"); |
a=Sannfs3("x^3+y^3+z^3"); |
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
|
|
return(Res); |
return(Res); |
} |
} |
|
|
|
def test25() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
|
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
|
ans2 = GKZ([[1,1,1,1,1,1], |
|
[0,0,0,1,1,1], |
|
[0,1,0,0,1,0], |
|
[0,0,1,0,0,1]],[0,0,0,0]);; |
|
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
} |
|
|
|
|
|
|