version 1.9, 2000/08/01 03:42:35 |
version 1.15, 2000/08/02 05:14:31 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.8 2000/07/31 01:21:41 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.14 2000/08/02 04:26:36 takayama Exp $ */ |
load["minimal.k"]; |
load["minimal.k"]; |
def sm1_resol1(p) { |
def sm1_resol1(p) { |
sm1(" p resol1 /FunctionValue set "); |
sm1(" p resol1 /FunctionValue set "); |
|
|
sm1_pmat(c); |
sm1_pmat(c); |
Println(IsExact_h(c,"x,y,z")); |
Println(IsExact_h(c,"x,y,z")); |
} |
} |
def test17b() { |
|
a=Sannfs3("x^3-y^2*z^2"); |
def test_if_v_strict(resmat,w,v) { |
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
local b,c,g; |
Sweyl("x,y,z",[w]); b = Reparse(b); |
Sweyl(v,[w]); b = Reparse(resmat); |
|
Println("Degree shifts "); |
|
Println(SgetShifts(b,w)); |
c=Sinit_w(b,w); |
c=Sinit_w(b,w); |
Println("Resolution (b)----"); |
Println("Resolution (b)----"); |
sm1_pmat(b); |
sm1_pmat(b); |
Println("Initial (c)----"); |
Println("Initial (c)----"); |
sm1_pmat(c); |
sm1_pmat(c); |
Println(IsExact_h(c,"x,y,z")); |
Println("Exactness of the resolution ---"); |
|
Println(IsExact_h(b,v)); |
|
Println("Exactness of the initial complex.---"); |
|
Println(IsExact_h(c,v)); |
g = Sinvolutive(b[0],w); |
g = Sinvolutive(b[0],w); |
Println("Involutive basis ---"); |
/* Println("Involutive basis ---"); |
sm1_pmat(g); |
sm1_pmat(g); |
|
Println(Sinvolutive(c[0],w)); |
|
sm1(" /gb.verbose 1 def "); */ |
Println("Is same ideal?"); |
Println("Is same ideal?"); |
Println(IsSameIdeal_h(g,c[0],"x,y")); |
Println(IsSameIdeal_h(g,c[0],v)); |
|
} |
|
def test17b() { |
|
a=Sannfs3("x^3-y^2*z^2"); |
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
|
test_if_v_strict(b,w,"x,y,z"); |
|
return(a); |
} |
} |
|
|
def test18() { |
def test18() { |
a=Sannfs2("x^3-y^2"); |
a=Sannfs2("x^3-y^2"); |
b=a[0]; w = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
b=a[0]; w = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
Sweyl("x,y",[w]); b = Reparse(b); |
test_if_v_strict(b,w,"x,y"); |
c=Sinit_w(b,w); |
return(a); |
Println("Resolution (b)----"); |
} |
sm1_pmat(b); |
|
Println("Initial (c)----"); |
def test19() { |
sm1_pmat(c); |
Println("test19 try to construct a minimal free resolution and check if it is v-strict."); |
g = Sinvolutive(b[0],w); |
Println("of a GKZ system [[1,2,3]] by -1,1"); |
Println("Involutive basis ---"); |
ww2 = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; |
sm1_pmat(g); |
ans2 = GKZ([[1,2,3]],[0]); |
Println("Is same ideal?"); |
Sweyl("x1,x2,x3",[ww2]); |
Println(IsSameIdeal_h(g,c[0],"x,y")); |
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
b = a[0]; |
|
test_if_v_strict(b,ww2,"x1,x2,x3"); |
|
return(a); |
|
} |
|
|
|
/* Need more than 100M memory. 291, 845, 1266, 1116, 592 : Schreyer frame. |
|
I've not yet tried to finish the computation. */ |
|
def test20() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; |
|
ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[0,0]); |
|
Sweyl("x1,x2,x3,x4",[w]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
b = a[0]; |
|
/* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ |
|
return(a); |
|
} |
|
def test20b() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; |
|
ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[1,2]); |
|
Sweyl("x1,x2,x3,x4",[w]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
b = a[0]; |
|
/* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ |
|
return(a); |
|
} |
|
|
|
def test21() { |
|
a=Sannfs3("x^3-y^2*z^2+y^2+z^2"); |
|
/* a=Sannfs3("x^3-y-z"); for debug */ |
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
|
test_if_v_strict(b,w,"x,y,z"); |
|
Println("Degree shifts of Schreyer resolution ----"); |
|
Println(SgetShifts(Reparse(a[4,0]),w)); |
|
return(a); |
|
} |
|
def test21b() { |
|
local i,j,n,sss, maxR, ttt,ans,p; |
|
Println("The dimensions of linear spaces -----"); |
|
/* sss is the SgetShifts of the Schreyer resol. */ |
|
sss= |
|
[[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] , |
|
[ -1, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 ] , |
|
[ 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3, 2, 2, 1, 4, 3, 3, 2, 0, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 3, 3, 4 ] , |
|
[ 1, 0, 2, 3, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 0, 3, 1, 3, 2, 3, 4 ] , |
|
[ 1, 1 ] ] ; |
|
maxR = 2; /* Maximal root of the b-function. */ |
|
n = Length(sss); |
|
for (i=0; i<n; i++) { |
|
ttt = sss[i]; |
|
ans = 0; |
|
for (j=0; j<Length(ttt); j++) { |
|
p = ttt[j] + maxR + 3; /* degree */ |
|
if (p >= 0) { |
|
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
|
/* Add the number of monomials */ |
|
} |
|
} |
|
Print(ans); Print(", "); |
|
} |
|
Println(" "); |
|
} |
|
def test22() { |
|
a=Sannfs3("x^3+y^3+z^3"); |
|
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
|
test_if_v_strict(b,w,"x,y,z"); |
|
return(a); |
} |
} |
|
|
|
|