version 1.15, 2000/08/02 05:14:31 |
version 1.21, 2000/08/24 00:48:58 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.14 2000/08/02 04:26:36 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.20 2000/08/22 05:34:06 takayama Exp $ */ |
load["minimal.k"]; |
load["minimal.k"]; |
def sm1_resol1(p) { |
def sm1_resol1(p) { |
sm1(" p resol1 /FunctionValue set "); |
sm1(" p resol1 /FunctionValue set "); |
|
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
test_if_v_strict(b,w,"x,y,z"); |
test_if_v_strict(b,w,"x,y,z"); |
Println("Degree shifts of Schreyer resolution ----"); |
Println("Degree shifts of Schreyer resolution ----"); |
Println(SgetShifts(Reparse(a[4,0]),w)); |
Println(SgetShifts(Reparse(a[3]),w)); |
return(a); |
return(a); |
} |
} |
def test21b() { |
def test21b() { |
local i,j,n,sss, maxR, ttt,ans,p; |
local i,j,n,sss, maxR, ttt,ans,p, euler; |
Println("The dimensions of linear spaces -----"); |
Println("The dimensions of linear spaces -----"); |
/* sss is the SgetShifts of the Schreyer resol. */ |
/* sss is the SgetShifts of the Schreyer resol. */ |
sss= |
sss=[ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 1 , 3 , 2 ] , [ 1 , 1 , 1 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 3 , 2 , 3 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 3 , 5 , 5 , 5 , 5 , 4 ] , [ 1 , 3 , 1 , 3 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 2 , 3 , 5 , 4 , 4 , 3 , 6 , 5 , 4 , 3 , 2 , 3 , 3 , 5 , 4 , 3 , 2 , 4 , 4 , 4 , 4 , 5 , 3 , 2 , 3 , 3 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 3 , 5 , 4 , 5 , 5 , 6 ] , [ 3 , 1 , 4 , 5 , 4 , 5 , 2 , 3 , 2 , 4 , 3 , 4 , 3 , 3 , 2 , 4 , 3 , 5 , 4 , 5 , 6 ] , [ 2 , 3 ] ] ; |
[[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] , |
maxR = 3; /* Maximal root of the b-function. */ |
[ -1, -1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 ] , |
|
[ 0, 1, -1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 3, 2, 2, 1, 4, 3, 3, 2, 0, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 1, 3, 3, 3, 3, 4 ] , |
|
[ 1, 0, 2, 3, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 0, 3, 1, 3, 2, 3, 4 ] , |
|
[ 1, 1 ] ] ; |
|
maxR = 2; /* Maximal root of the b-function. */ |
|
n = Length(sss); |
n = Length(sss); |
|
euler = 0; |
for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
ttt = sss[i]; |
ttt = sss[i]; |
ans = 0; |
ans = 0; |
for (j=0; j<Length(ttt); j++) { |
for (j=0; j<Length(ttt); j++) { |
p = ttt[j] + maxR + 3; /* degree */ |
p = -ttt[j] + maxR + 3; /* degree */ |
if (p >= 0) { |
if (p-maxR >= 0) { |
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
/* Add the number of monomials */ |
/* Add the number of monomials */ |
} |
} |
} |
} |
Print(ans); Print(", "); |
Print(ans); Print(", "); |
|
euler = euler+(-1)^i*ans; |
} |
} |
Println(" "); |
Println(" "); |
|
Print("Euler number is : "); Println(euler); |
} |
} |
|
def test21c() { |
|
local i,j,n,sss, maxR, ttt,ans,p, euler; |
|
Println("The dimensions of linear spaces -----"); |
|
/* sss is the SgetShifts of the minimal resol. */ |
|
sss= [ [ 0 ] , [ 2 , 2 , 2 , 2 , 2 , 2 , 2 ] , [ 1 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4 ] , [ 1 , 3 , 4 , 6 ] ]; |
|
maxR = 3; /* Maximal root of the b-function. */ |
|
n = Length(sss); |
|
euler = 0; |
|
for (i=0; i<n; i++) { |
|
ttt = sss[i]; |
|
ans = 0; |
|
for (j=0; j<Length(ttt); j++) { |
|
p = -ttt[j] + maxR + 3; /* degree */ |
|
if (p-maxR >= 0) { |
|
ans = ans + CancelNumber(p*(p-1)*(p-2)/(3*2*1)); |
|
/* Add the number of monomials */ |
|
} |
|
} |
|
Print(ans); Print(", "); |
|
euler = euler+(-1)^i*ans; |
|
} |
|
Println(" "); |
|
Print("Euler number is : "); Println(euler); |
|
} |
def test22() { |
def test22() { |
a=Sannfs3("x^3+y^3+z^3"); |
a=Sannfs3("x^3+y^3+z^3"); |
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
test_if_v_strict(b,w,"x,y,z"); |
test_if_v_strict(b,w,"x,y,z"); |
return(a); |
return(a); |
} |
} |
|
|
|
def FillFromLeft(mat,p,z) { |
|
local m,n,i,j,aa; |
|
m = Length(mat); n = Length(mat[0]); |
|
aa = NewMatrix(m,n+p); |
|
for (i=0; i<m; i++) { |
|
for (j=0; j<p; j++) { |
|
aa[i,j] = z; /* zero */ |
|
} |
|
for (j=0; j<n; j++) { |
|
aa[i,j+p] = mat[i,j]; |
|
} |
|
} |
|
return(aa); |
|
} |
|
|
|
def FillFromRight(mat,p,z) { |
|
local m,n,i,j,aa; |
|
m = Length(mat); n = Length(mat[0]); |
|
aa = NewMatrix(m,n+p); |
|
for (i=0; i<m; i++) { |
|
for (j=n; j<n+p; j++) { |
|
aa[i,j] = z; /* zero */ |
|
} |
|
for (j=0; j<n; j++) { |
|
aa[i,j] = mat[i,j]; |
|
} |
|
} |
|
return(aa); |
|
} |
|
|
|
def test23() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; |
|
Sweyl("x1,x2,x3",[w]); |
|
d2 = [[Dx1^2-Dx2*h] , [-Dx1*Dx2+Dx3*h] , [Dx2^2-Dx1*Dx3] ]; |
|
d1 = [[-Dx2, -Dx1, -h],[Dx3,Dx2,Dx1]]; |
|
LL = x1*Dx1 + 2*x2*Dx2+3*x3*Dx3; |
|
/* It is exact for LL = Dx1 + 2*Dx2+3*Dx3; */ |
|
u1 = [[LL+4*h^2,Poly("0")],[Poly("0"),LL+5*h^2]]; |
|
u2 = [[LL+2*h^2,Poly("0"),Poly("0")], |
|
[Poly("0"),LL+3*h^2,Poly("0")], |
|
[Poly("0"),Poly("0"),LL+4*h^2]]; |
|
u3 = [[LL]]; |
|
Println("Checking if it is a double complex. "); |
|
Println("u^2 d^2 - d^2 u^3"); |
|
sm1_pmat(u2*d2 - d2*u3); |
|
Println("u^1 d^1 - d^1 u^2"); |
|
sm1_pmat(u1*d1 - d1*u2); |
|
aa = [ |
|
Join(u3,d2), |
|
Join(FillFromLeft(u2,1,Poly("0"))-FillFromRight(d2,3,Poly("0")), |
|
FillFromLeft(d1,1,Poly("0"))), |
|
FillFromLeft(u1,3,Poly("0"))-FillFromRight(d1,2,Poly("0")) |
|
]; |
|
Println([ aa[1]*aa[0], aa[2]*aa[1] ]); |
|
r= IsExact_h(aa,[x1,x2,x3]); |
|
Println(r); |
|
/* sm1_pmat(aa); */ |
|
return(aa); |
|
} |
|
|
|
|
|
def test24() { |
|
local Res, Eqs, ww,a; |
|
ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
|
Println("Example of V-minimal <> minimal "); |
|
Sweyl("x,y", [ww]); |
|
Eqs = [Dx-(x*Dx+y*Dy), |
|
Dy-(x*Dx+y*Dy)]; |
|
sm1(" Eqs dehomogenize /Eqs set"); |
|
Res = Sminimal(Eqs); |
|
Sweyl("x,y", [ww]); |
|
a = Reparse(Res[0]); |
|
sm1_pmat(a); |
|
Println("Initial of the complex is "); |
|
sm1_pmat( Sinit_w(a,ww) ); |
|
return(Res); |
|
} |
|
|
|
def test24b() { |
|
local Res, Eqs, ww ; |
|
ww = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
|
Println("Construction of minimal "); |
|
Sweyl("x,y", [ww]); |
|
Eqs = [Dx-(x*Dx+y*Dy), |
|
Dy-(x*Dx+y*Dy)]; |
|
sm1(" Eqs dehomogenize /Eqs set"); |
|
Res = Sminimal(Eqs,["Sordinary"]); |
|
sm1_pmat(Res[0]); |
|
return(Res); |
|
} |
|
|
|
def test25() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
|
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
|
ans2 = GKZ([[1,1,1,1,1,1], |
|
[0,0,0,1,1,1], |
|
[0,1,0,0,1,0], |
|
[0,0,1,0,0,1]],[0,0,0,0]);; |
|
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
} |
|
|
|
def test25b() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"Dx5",1,"Dx6",1, |
|
"x1",-1,"x2",-1,"x3",-1,"x4",-1,"x5",-1,"x6",-1]; |
|
ans2 = GKZ([[1,1,1,1,1,1], |
|
[0,0,0,1,1,1], |
|
[0,1,0,0,1,0], |
|
[0,0,1,0,0,1]],[0,0,0,0]); |
|
Sweyl("x1,x2,x3,x4,x5,x6",[w]); |
|
ans2 = ans2[0]; |
|
sm1(" ans2 rest rest rest rest /ans2 set "); |
|
Println(ans2); /* Generators of the toric ideal */ |
|
ans2 = ReParse(ans2); |
|
a = Sminimal(ans2); |
|
} |
|
|
|
|
|
|