version 1.2, 2000/06/08 08:37:53 |
version 1.14, 2000/08/02 04:26:36 |
|
|
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.1 2000/05/24 15:31:28 takayama Exp $ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.13 2000/08/02 03:23:36 takayama Exp $ */ |
load["minimal.k"]; |
load["minimal.k"]; |
def test5() { |
|
local a,b,c,cc,v; |
|
a = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
b = a[0]; |
|
v = [x,y,z]; |
|
c = Skernel(b[0],v); |
|
c = c[0]; |
|
sm1_pmat([c,b[1],v]); |
|
Println("-----------------------------------"); |
|
cc = sm1_res_div(c,b[1],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
c = Skernel(b[1],v); |
|
c = c[0]; |
|
cc = sm1_res_div(c,b[2],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
return(a); |
|
} |
|
def test6() { |
|
local a,b,c,cc,v; |
|
a = Sannfs3("x^3-y^2*z^2"); |
|
b = a[0]; |
|
v = [x,y,z]; |
|
c = Skernel(b[0],v); |
|
c = c[0]; |
|
sm1_pmat([c,b[1],v]); |
|
Println("-------ker = im for minimal ?---------------------"); |
|
cc = sm1_res_div(c,b[1],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
c = Skernel(b[1],v); |
|
c = c[0]; |
|
cc = sm1_res_div(c,b[2],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
Println("------ ker=im for Schreyer ?------------------"); |
|
b = a[3]; |
|
c = Skernel(b[0],v); |
|
c = c[0]; |
|
sm1_pmat([c,b[1],v]); |
|
cc = sm1_res_div(c,b[1],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
c = Skernel(b[1],v); |
|
c = c[0]; |
|
cc = sm1_res_div(c,b[2],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
return(a); |
|
} |
|
|
|
/* May 23, Tue */ |
|
def test7() { |
|
local a,b,c,cc,v; |
|
a = Sannfs3_laScala2("x^3-y^2*z^2"); |
|
b = a[0]; |
|
v = [x,y,z]; |
|
c = Skernel(b[0],v); |
|
c = c[0]; |
|
sm1_pmat([c,b[1],v]); |
|
Println("-------ker = im for minimal ?---------------------"); |
|
cc = sm1_res_div(c,b[1],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
c = Skernel(b[1],v); |
|
c = c[0]; |
|
cc = sm1_res_div(c,b[2],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
Println("------ ker=im for Schreyer ?------------------"); |
|
b = a[3]; |
|
c = Skernel(b[0],v); |
|
c = c[0]; |
|
sm1_pmat([c,b[1],v]); |
|
cc = sm1_res_div(c,b[1],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
c = Skernel(b[1],v); |
|
c = c[0]; |
|
cc = sm1_res_div(c,b[2],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
return(a); |
|
} |
|
|
|
def sm1_resol1(p) { |
def sm1_resol1(p) { |
sm1(" p resol1 /FunctionValue set "); |
sm1(" p resol1 /FunctionValue set "); |
} |
} |
|
|
|
|
def test8() { |
def test8() { |
local p,pp,ans,b,c,cc,ww,ww2; |
local p,pp,ans,b,c,cc,ww,ww2; |
f = "x^3-y^2*z^2"; |
f = "x^3-y^2*z^2"; |
|
|
SisComplex(a): |
SisComplex(a): |
*/ |
*/ |
|
|
def test8a() { |
def test11() { |
local p,pp,ans,b,c,cc,ww, ans_all; |
local a; |
f = "x^3-y^2*z^2"; |
a = test_ann3("x^3-y^2*z^2"); |
p = Sannfs(f,"x,y,z"); |
return(a); |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
} |
ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
/* f should be a string. */ |
/* Removed "x",1, ... ===> It causes an error. I do not know the reason.*/ |
/* a=test_ann3("x^3+y^3+z^3"); |
Sweyl("x,y,z",ww); |
It returns the following resolution in 1.5 hours. June 14, 2000. |
pp = Map(p,"Spoly"); |
[ |
/* return(pp); */ |
[ |
/* pp = |
[ x*Dx+y*Dy+z*Dz-3*h^2 ] |
[y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 , |
[ -z*Dy^2+y*Dz^2 ] |
2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ] |
[ -z*Dx^2+x*Dz^2 ] |
*/ |
[ -y*Dx^2+x*Dy^2 ] |
ans_all = Sschreyer(pp); |
] |
ans = ans_all[0]; |
[ |
/* ans = sm1_resol1([pp,"x,y,z",ww]); */ |
[ 0 , -x , y , -z ] |
/* Schreyer is in ans. */ |
[ z*Dx^2-x*Dz^2 , x*Dy , x*Dx+z*Dz-3*h^2 , z*Dy ] |
|
[ y*Dx^2-x*Dy^2 , -x*Dz , y*Dz , x*Dx+y*Dy-3*h^2 ] |
|
[ 0 , Dx^2 , -Dy^2 , Dz^2 ] |
|
[ z*Dy^2-y*Dz^2 , x*Dx+y*Dy+z*Dz-2*h^2 , 0 , 0 ] |
|
] |
|
[ |
|
[ -x*Dx+3*h^2 , y , -z , 0 , -x ] |
|
[ Dy^3+Dz^3 , Dy^2 , -Dz^2 , x*Dx+y*Dy+z*Dz , -Dx^2 ] |
|
] |
|
] |
|
*/ |
|
def test_ann3(f) { |
|
local a,v,ww2,ans2; |
|
a = Sannfs3(f); |
|
ans2 = a[0]; |
v = [x,y,z]; |
v = [x,y,z]; |
b = ans; |
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
Println("------ ker=im for Schreyer ?------------------"); |
Sweyl("x,y,z",ww2); |
c = Skernel(b[0],v); |
ans2 = ReParse(ans2); |
c = c[0]; |
r= IsExact_h(ans2,[x,y,z]); |
sm1_pmat([c,b[1],v]); |
Println(r); |
cc = sm1_res_div(c,b[1],v); |
return([r,ans2,a]); |
sm1_pmat(sm1_gb(cc,v)); |
|
c = Skernel(b[1],v); |
|
c = c[0]; |
|
cc = sm1_res_div(c,b[2],v); |
|
sm1_pmat(sm1_gb(cc,v)); |
|
return(ans); |
|
} |
} |
|
def test11a() { |
|
local a,v,ww2,ans2; |
|
/* constructed by test11. |
|
ans2 = |
|
[[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , |
|
[[3*Dx^2*h , 0 , Dy , -Dz] , |
|
[6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , |
|
[0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , |
|
[2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , |
|
[0 , 0 , 0 , 0] , |
|
[2*x*Dy*Dz , 0 , z , -y] , |
|
[0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0]] , |
|
[[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy^2 , 3*Dy*Dz , -2*x*Dy , 2*x*Dz , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[3*y*z , z , y , -2*x*Dy*Dz , -3*z*Dy , 2*x*Dx , 2*x*z , -2*x*y , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]] , |
|
[[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]]] |
|
*/ |
|
ans2 = |
|
[[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , |
|
[[3*Dx^2*h , 0 , Dy , -Dz] , |
|
[6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , |
|
[0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , |
|
[2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , |
|
[2*x*Dy*Dz , 0 , z , -y]], |
|
[[-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy*Dz ] , |
|
[3*y*z , z , y , -2*x*Dy*Dz , 2*x*Dx]]]; |
|
|
/* Comparing two constructions */ |
sm1_pmat( ans2[1]*ans2[0] ); |
def test9() { |
sm1_pmat( ans2[2]*ans2[1] ); |
local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2; |
|
f = "x^3-y^2*z^2"; |
|
p = Sannfs(f,"x,y,z"); |
|
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
Sweyl("x,y,z",ww2); |
Sweyl("x,y,z",ww2); |
pp = Map(p,"Spoly"); |
ans2 = ReParse(ans2); |
ans = sm1_resol1([pp,"x,y,z",ww2]); |
r= IsExact_h(ans2,[x,y,z]); |
|
Println(r); |
|
return([r,ans2]); |
|
} |
|
|
f = "x^3-y^2*z^2"; |
def test12() { |
p = Sannfs(f,"x,y,z"); |
local a,v,ww2,ans2; |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
a = Sannfs3("x^3-y^2*z^2"); |
ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
ans2 = a[0]; |
Sweyl("x,y,z",ww); |
v = [x,y,z]; |
pp = Map(p,"Spoly"); |
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
ans_all = Sschreyer(pp); |
Sweyl("x,y,z",ww2); |
ans2 = ans_all[0]; |
ans2 = ReParse(ans2); /* DO NOT FORGET! */ |
|
r= IsExact_h(ans2,[x,y,z]); |
|
Println(r); |
|
return([r,ans2]); |
|
} |
|
|
return([ans,ans2]); |
def test13() { |
|
Println("test13 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2]]. 6/12, 2000."); |
|
ans2 = GKZ([[1,2]],[0]); |
|
/* Be careful!! It resets the grade to module1, not module1v */ |
|
ww2 = [["x1",-1,"x2",-1,"Dx1",1,"Dx2",1]]; |
|
Sweyl("x1,x2",ww2); |
|
ans2 = ReParse(ans2[0]); |
|
Println(ans2); |
|
return(Sminimal(ans2)); |
|
} |
|
|
|
def test14() { |
|
Println("test14 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); |
|
ans2 = GKZ([[1,2,3]],[0]); |
|
/* It stops by the strategy error. |
|
July 26, 2000. It works fine after fixing a bug in resol.c */ |
|
ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = ReParse(ans2[0]); |
|
return(Sminimal(ans2)); |
} |
} |
|
def test14a() { |
|
Println("test14a try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); |
|
Println("Without automatic homogenization."); |
|
ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = [x1*Dx1+2*x2*Dx2+3*x3*Dx3 , Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , |
|
Dx2^2-Dx1*Dx3 ]; |
|
ans2 = ReParse(ans2); |
|
return(Sminimal(ans2,["homogenized"])); |
|
} |
|
|
/* Check if the complex is exact or not? */ |
def test15() { |
def test10() { |
Println("test15 try to construct a minimal free resolution"); |
local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2, r; |
Println("of a GKZ system [[1,2,3]] by the order filt. 6/12, 2000."); |
f = "x^3-y^2*z^2"; |
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; |
p = Sannfs(f,"x,y,z"); |
ans2 = GKZ([[1,2,3]],[0]); |
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
Sweyl("x1,x2,x3",ww2); |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
ans2 = ReParse(ans2[0]); |
Sweyl("x,y,z",ww2); |
a = Sminimal(ans2); |
pp = Map(p,"Spoly"); |
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
ans = sm1_resol1([pp,"x,y,z",ww2]); |
Sweyl("x1,x2,x3"); |
|
ans3 = ReParse(a[0]); |
|
r= IsExact_h(ans3,[x1,x2,x3]); |
|
Println(r); |
|
return(a); |
|
} |
|
|
f = "x^3-y^2*z^2"; |
def test15b() { |
p = Sannfs(f,"x,y,z"); |
Println("test15b try to construct a minimal free resolution"); |
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
Println("of toric [[1,2,3]] by the order filt. 6/12, 2000."); |
ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; |
Sweyl("x,y,z",ww); |
Sweyl("x1,x2,x3",ww2); |
pp = Map(p,"Spoly"); |
ans2 = [Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , Dx2^2-Dx1*Dx3 ]; |
ans_all = Sschreyer(pp); /* Schreyer by LaScala-Stillman */ |
ans2 = ReParse(ans2); |
ans2 = ans_all[0]; |
return(Sminimal(ans2,["homogenized"])); |
|
} |
r= SisExact_h(ans2,[x,y,z]); |
|
Print(r); |
|
|
|
return([r,[ans,ans2]]); |
|
|
|
|
def test15c() { |
|
Println("test15c try to construct a minimal free resolution "); |
|
Println("of a GKZ system [[1,2,3]] by -1,1"); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]]; |
|
ans2 = GKZ([[1,2,3]],[0]); |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
Sweyl("x1,x2,x3"); |
|
ans3 = ReParse(a[0]); |
|
r= IsExact_h(ans3,[x1,x2,x3]); |
|
Println(r); |
|
return(a); |
} |
} |
|
def test16() { |
|
Println("test16 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3,5]] by the order filt. 6/12, 2000."); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]]; |
|
Sweyl("x1,x2,x3,x4",ww2); |
|
ans2 = GKZ([[1,2,3,5]],[0]); |
|
ans2 = ReParse(ans2[0]); |
|
return(Sminimal(ans2)); |
|
} |
|
|
|
def test16b() { |
|
Println("test16b try to construct a minimal free resolution"); |
|
Println("of a toric [[1,2,3,5]] by the order filt. 6/12, 2000."); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]]; |
|
Sweyl("x1,x2,x3,x4",ww2); |
|
ans2 = GKZ([[1,2,3,5]],[0]); |
|
ans3 = Rest(ans2[0]); |
|
ans3 = ReParse(ans3); |
|
Println("Toric variety:"); |
|
Println(ans3); |
|
return(Sminimal(ans3)); |
|
} |
|
|
|
|
|
def test17() { |
|
a=Sannfs3("x^3-y^2*z^2"); |
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
|
Sweyl("x,y,z",[w]); b = Reparse(b); |
|
c=Sinit_w(b,w); |
|
Println("Resolution (b)----"); |
|
sm1_pmat(b); |
|
Println("Initial (c)----"); |
|
sm1_pmat(c); |
|
Println(IsExact_h(c,"x,y,z")); |
|
} |
|
|
|
def test_if_v_strict(resmat,w,v) { |
|
local b,c,g; |
|
Sweyl(v,[w]); b = Reparse(resmat); |
|
Println("Degree shifts "); |
|
Println(SgetShifts(b,w)); |
|
c=Sinit_w(b,w); |
|
Println("Resolution (b)----"); |
|
sm1_pmat(b); |
|
Println("Initial (c)----"); |
|
sm1_pmat(c); |
|
Println("Exactness of the resolution ---"); |
|
Println(IsExact_h(b,v)); |
|
Println("Exactness of the initial complex.---"); |
|
Println(IsExact_h(c,v)); |
|
g = Sinvolutive(b[0],w); |
|
/* Println("Involutive basis ---"); |
|
sm1_pmat(g); |
|
Println(Sinvolutive(c[0],w)); |
|
sm1(" /gb.verbose 1 def "); */ |
|
Println("Is same ideal?"); |
|
Println(IsSameIdeal_h(g,c[0],v)); |
|
} |
|
def test17b() { |
|
a=Sannfs3("x^3-y^2*z^2"); |
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
|
test_if_v_strict(b,w,"x,y,z"); |
|
return(a); |
|
} |
|
|
|
def test18() { |
|
a=Sannfs2("x^3-y^2"); |
|
b=a[0]; w = ["x",-1,"y",-1,"Dx",1,"Dy",1]; |
|
test_if_v_strict(b,w,"x,y"); |
|
return(a); |
|
} |
|
|
|
def test19() { |
|
Println("test19 try to construct a minimal free resolution and check if it is v-strict."); |
|
Println("of a GKZ system [[1,2,3]] by -1,1"); |
|
ww2 = ["Dx1",1,"Dx2",1,"Dx3",1,"x1",-1,"x2",-1,"x3",-1]; |
|
ans2 = GKZ([[1,2,3]],[0]); |
|
Sweyl("x1,x2,x3",[ww2]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
b = a[0]; |
|
test_if_v_strict(b,ww2,"x1,x2,x3"); |
|
return(a); |
|
} |
|
|
|
/* Need more than 100M memory. 291, 845, 1266, 1116, 592 : Schreyer frame. |
|
I've not yet tried to finish the computation. */ |
|
def test20() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; |
|
ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[0,0]); |
|
Sweyl("x1,x2,x3,x4",[w]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
b = a[0]; |
|
/* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ |
|
return(a); |
|
} |
|
def test20b() { |
|
w = ["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1,"x1",-1,"x2",-1,"x3",-1,"x4",-1]; |
|
ans2 = GKZ([[1,1,1,1],[0,1,3,4]],[1,2]); |
|
Sweyl("x1,x2,x3,x4",[w]); |
|
ans2 = ReParse(ans2[0]); |
|
a = Sminimal(ans2); |
|
Println("Minimal Resolution is "); sm1_pmat(a[0]); |
|
b = a[0]; |
|
/* test_if_v_strict(b,w,"x1,x2,x3,x4"); */ |
|
return(a); |
|
} |
|
|
|
def test21() { |
|
a=Sannfs3("x^3-y^2*z^2+y^2+z^2"); |
|
/* a=Sannfs3("x^3-y-z"); for debug */ |
|
b=a[0]; w = ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]; |
|
test_if_v_strict(b,w,"x,y,z"); |
|
Println("Degree shifts of Schreyer resolution ----"); |
|
Println(SgetShifts(Reparse(a[4,0]),w)); |
|
return(a); |
|
} |
|
def test22() { |
|
a=Sannfs3("x^3+y^3+z^3"); |
|
b=a[0]; w = ["x",-1,"y",-2,"z",-3,"Dx",1,"Dy",2,"Dz",3]; |
|
test_if_v_strict(b,w,"x,y,z"); |
|
return(a); |
|
} |
|
|
|
|