version 1.1, 2000/05/24 15:31:28 |
version 1.5, 2000/06/15 07:38:35 |
|
|
/* $OpenXM$ */ |
/* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.4 2000/06/14 07:44:05 takayama Exp $ */ |
load["minimal.k"]; |
load["minimal.k"]; |
def test5() { |
def test5() { |
local a,b,c,cc,v; |
local a,b,c,cc,v; |
|
|
|
|
v = [x,y,z]; |
v = [x,y,z]; |
b = ans; |
b = ans; |
Println("------ ker=im for Schreyer ?------------------"); |
Println("------ ker=im for Schreyer ?----- wrong method!!!-----------"); |
c = Skernel(b[0],v); |
c = Skernel(b[0],v); |
c = c[0]; |
c = c[0]; |
sm1_pmat([c,b[1],v]); |
sm1_pmat([c,b[1],v]); |
|
|
return([ans,ans2]); |
return([ans,ans2]); |
|
|
} |
} |
|
|
|
/* Check if the complex by Sschreyer() is exact or not in our example? */ |
|
def test10() { |
|
local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2, r; |
|
f = "x^3-y^2*z^2"; |
|
p = Sannfs(f,"x,y,z"); |
|
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
Sweyl("x,y,z",ww2); |
|
pp = Map(p,"Spoly"); |
|
ans = sm1_resol1([pp,"x,y,z",ww2]); |
|
|
|
f = "x^3-y^2*z^2"; |
|
p = Sannfs(f,"x,y,z"); |
|
sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set "); |
|
ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
|
Sweyl("x,y,z",ww); |
|
pp = Map(p,"Spoly"); |
|
ans_all = Sschreyer(pp); /* Schreyer by LaScala-Stillman */ |
|
ans2 = ans_all[0]; |
|
|
|
sm1(" /gb.verbose 1 def "); |
|
|
|
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
|
Sweyl("x,y,z",ww2); |
|
ans2 = ReParse(ans2); |
|
r= IsExact_h(ans2,[x,y,z]); |
|
Print(r); |
|
|
|
return([r,[ans,ans2]]); |
|
|
|
} |
|
|
|
def test11() { |
|
local a; |
|
a = test_ann3("x^3-y^2*z^2"); |
|
return(a); |
|
} |
|
/* f should be a string. */ |
|
/* a=test_ann3("x^3+y^3+z^3"); |
|
It returns the following resolution in 1.5 hours. June 14, 2000. |
|
[ |
|
[ |
|
[ x*Dx+y*Dy+z*Dz-3*h^2 ] |
|
[ -z*Dy^2+y*Dz^2 ] |
|
[ -z*Dx^2+x*Dz^2 ] |
|
[ -y*Dx^2+x*Dy^2 ] |
|
] |
|
[ |
|
[ 0 , -x , y , -z ] |
|
[ z*Dx^2-x*Dz^2 , x*Dy , x*Dx+z*Dz-3*h^2 , z*Dy ] |
|
[ y*Dx^2-x*Dy^2 , -x*Dz , y*Dz , x*Dx+y*Dy-3*h^2 ] |
|
[ 0 , Dx^2 , -Dy^2 , Dz^2 ] |
|
[ z*Dy^2-y*Dz^2 , x*Dx+y*Dy+z*Dz-2*h^2 , 0 , 0 ] |
|
] |
|
[ |
|
[ -x*Dx+3*h^2 , y , -z , 0 , -x ] |
|
[ Dy^3+Dz^3 , Dy^2 , -Dz^2 , x*Dx+y*Dy+z*Dz , -Dx^2 ] |
|
] |
|
] |
|
*/ |
|
def test_ann3(f) { |
|
local a,v,ww2,ans2; |
|
a = Sannfs3_laScala2(f); |
|
ans2 = a[0]; |
|
v = [x,y,z]; |
|
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
|
Sweyl("x,y,z",ww2); |
|
ans2 = ReParse(ans2); |
|
r= IsExact_h(ans2,[x,y,z]); |
|
Println(r); |
|
return([r,ans2]); |
|
} |
|
def test11a() { |
|
local a,v,ww2,ans2; |
|
/* constructed by test11. |
|
ans2 = |
|
[[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , |
|
[[3*Dx^2*h , 0 , Dy , -Dz] , |
|
[6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , |
|
[0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , |
|
[2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , |
|
[0 , 0 , 0 , 0] , |
|
[2*x*Dy*Dz , 0 , z , -y] , |
|
[0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0]] , |
|
[[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy^2 , 3*Dy*Dz , -2*x*Dy , 2*x*Dz , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[3*y*z , z , y , -2*x*Dy*Dz , -3*z*Dy , 2*x*Dx , 2*x*z , -2*x*y , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]] , |
|
[[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , |
|
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]]] |
|
*/ |
|
ans2 = |
|
[[[y*Dy-z*Dz] , [-2*x*Dx-3*z*Dz+h^2] , [2*x*Dy*Dz^2-3*y*Dx^2*h] , [2*x*Dy^2*Dz-3*z*Dx^2*h]] , |
|
[[3*Dx^2*h , 0 , Dy , -Dz] , |
|
[6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0] , |
|
[0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz] , |
|
[2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0] , |
|
[2*x*Dy*Dz , 0 , z , -y]], |
|
[[-2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy*Dz ] , |
|
[3*y*z , z , y , -2*x*Dy*Dz , 2*x*Dx]]]; |
|
|
|
sm1_pmat( ans2[1]*ans2[0] ); |
|
sm1_pmat( ans2[2]*ans2[1] ); |
|
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
|
Sweyl("x,y,z",ww2); |
|
ans2 = ReParse(ans2); |
|
r= IsExact_h(ans2,[x,y,z]); |
|
Println(r); |
|
return([r,ans2]); |
|
} |
|
|
|
def test12() { |
|
local a,v,ww2,ans2; |
|
a = Sannfs3("x^3-y^2*z^2"); |
|
ans2 = a[0]; |
|
v = [x,y,z]; |
|
ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]; |
|
Sweyl("x,y,z",ww2); |
|
ans2 = ReParse(ans2); /* DO NOT FORGET! */ |
|
r= IsExact_h(ans2,[x,y,z]); |
|
Println(r); |
|
Println("It may stop by non-exact statement. The code of Sminimal_v (non-LaScala-Stillman contains bugs."); |
|
return([r,ans2]); |
|
} |
|
|
|
def test13() { |
|
Println("test13 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2]]. 6/12, 2000."); |
|
ans2 = GKZ([[1,2]],[0]); |
|
/* Be careful!! It resets the grade to module1, not module1v */ |
|
ww2 = [["x1",-1,"x2",-1,"Dx1",1,"Dx2",1]]; |
|
Sweyl("x1,x2",ww2); |
|
ans2 = ReParse(ans2[0]); |
|
Println(ans2); |
|
return(Sminimal(ans2)); |
|
} |
|
|
|
def test14() { |
|
Println("test14 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); |
|
ans2 = GKZ([[1,2,3]],[0]); /* It stops by the strategy error. */ |
|
ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = ReParse(ans2[0]); |
|
return(Sminimal(ans2)); |
|
} |
|
def test14a() { |
|
Println("test14a try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3]]. 6/12, 2000."); |
|
Println("Without automatic homogenization."); |
|
ww2 = [["x1",-1,"x2",-1,"x3",-1,"Dx1",1,"Dx2",1,"Dx3",1]]; |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = [x1*Dx1+2*x2*Dx2+3*x3*Dx3 , Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , |
|
Dx2^2-Dx1*Dx3 ]; |
|
ans2 = ReParse(ans2); |
|
return(Sminimal(ans2,"homogenized")); |
|
} |
|
|
|
def test15() { |
|
Println("test15 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3]] by the order filt. 6/12, 2000."); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = GKZ([[1,2,3]],[0]); |
|
ans2 = ReParse(ans2[0]); |
|
return(Sminimal(ans2)); |
|
} |
|
|
|
def test15b() { |
|
Println("test15b try to construct a minimal free resolution"); |
|
Println("of toric [[1,2,3]] by the order filt. 6/12, 2000."); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1]]; |
|
Sweyl("x1,x2,x3",ww2); |
|
ans2 = [Dx1^2-Dx2*h , -Dx1*Dx2+Dx3*h , Dx2^2-Dx1*Dx3 ]; |
|
ans2 = ReParse(ans2); |
|
return(Sminimal(ans2,"homogenized")); |
|
} |
|
|
|
def test16() { |
|
Println("test16 try to construct a minimal free resolution"); |
|
Println("of a GKZ system [[1,2,3,5]] by the order filt. 6/12, 2000."); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]]; |
|
Sweyl("x1,x2,x3,x4",ww2); |
|
ans2 = GKZ([[1,2,3,5]],[0]); |
|
ans2 = ReParse(ans2[0]); |
|
return(Sminimal(ans2)); |
|
} |
|
|
|
def test16b() { |
|
Println("test16b try to construct a minimal free resolution"); |
|
Println("of a toric [[1,2,3,5]] by the order filt. 6/12, 2000."); |
|
ww2 = [["Dx1",1,"Dx2",1,"Dx3",1,"Dx4",1]]; |
|
Sweyl("x1,x2,x3,x4",ww2); |
|
ans2 = GKZ([[1,2,3,5]],[0]); |
|
ans3 = Rest(ans2[0]); |
|
ans3 = ReParse(ans3); |
|
Println("Toric variety:"); |
|
Println(ans3); |
|
return(Sminimal(ans3)); |
|
} |
|
|
|
|
|
|
|
|