[BACK]Return to minimal-note-ja.txt CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Diff for /OpenXM/src/k097/lib/minimal/minimal-note-ja.txt between version 1.1 and 1.3

version 1.1, 2000/05/19 11:16:51 version 1.3, 2000/06/08 08:37:53
Line 1 
Line 1 
 $OpenXM$  $OpenXM: OpenXM/src/k097/lib/minimal/minimal-note-ja.txt,v 1.2 2000/05/24 15:24:54 takayama Exp $
   
 SpairAndReduction() :  SpairAndReduction() :
    $BM?$($i$l$?(B pair $B$r(B reduction $B$9$k(B.     $BM?$($i$l$?(B pair $B$r(B reduction $B$9$k(B.
Line 61  In(17)=sm1_pmat(a2[2]);
Line 61  In(17)=sm1_pmat(a2[2]);
  ]   ]
 In(18)=  In(18)=
   
   ---------------------------
   
   May 22, (Tue),  5:50 (Spain local time, 12:50 JST)
   
   kan96xx/Kan/resol.c $B$G(B,
      RemoveRedundantInSchreyerSkelton = 0
   $B$KJQ$($F(B ($B$3$N(B option $B$b$"$?$i$7$/2C$($k(B), schreyer $B$,@5$7$/F0$/$+(B
   $BD4$Y$k$3$H$K$9$k(B.
   ( commit $B$O(B kan96xx $B$H(B k097 $BN>J}$9$Y$7(B.)
   
   test8() $B$G(B sm1 $B$G=q$$$?J}$N(B Schreyer $B$r8+$k$H(B,
      RemoveRedundantInSchreyerSkelton = 1
   $B$G$b(B,
   kernel = image
   $B$H$J$C$F$$$k$N$G0J8e$3$N(B option $B$O(B 1 $B$N$^$^;H$&$3$H$H$9$k(B.
   $BMW$9$k$K(B k0 $B$N%3!<%I$,$I$&$d$i$*$+$7$$$i$7$$(B.
   
   -----------------------------------
   June 8, 2000 (Thu), 9:10 (Spain local time)
   hol.sm1 :  gb_h, syz_h, isSameIdeal, isSameIdeal_h
   complex.sm1 :  isExact, isExact_h
   
   syzygy $B$r(B homogenization $B$r2p$7$F7W;;$9$k$N$OLdBj$"$j(B.
   --> usage of isExact
   
   [(Homogenize_vec) 0] system_variable : vector $B$N(B homogenize $B$r$7$J$$(B.
   (grade) (module1v) switch_function : vector $BJQ?t$O(B, total
          degree $B$K?t$($J$$(B.
   ==> $BL58B%k!<%W$KCm0U(B   ---> gb_h, syz_h  $B$N(B usage.
   
   minimal-test.k $B$N(B ann(x^3-y^2*z^2) $B$N(B laplace $BJQ49$N(B
   betti $B?t$,JQ(B, exact $B$G$J$$(B, $B$r(B isExact_h $B$G(B check
   $B$7$h$&(B.
   
   minimal-test.k
   test10();
     LaScala-Stillman $B$NJ}K!$G$D$/$C$?(B, schreyer resol $B$,(B exact $B$+(B
     $BD4$Y$k(B.
     $BNcBj$O(B, ann(1/(x^3-y^2 z^2)) $B$N(B Laplace $BJQ49(B.
   
   
   

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.3

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>