version 1.10, 2000/08/01 08:51:02 |
version 1.12, 2000/08/09 03:45:27 |
|
|
$OpenXM: OpenXM/src/k097/lib/minimal/minimal-note-ja.txt,v 1.9 2000/07/30 02:26:25 takayama Exp $ |
$OpenXM: OpenXM/src/k097/lib/minimal/minimal-note-ja.txt,v 1.11 2000/08/02 05:14:30 takayama Exp $ |
|
|
SpairAndReduction() : |
SpairAndReduction() : |
$BM?$($i$l$?(B pair $B$r(B reduction $B$9$k(B. |
$BM?$($i$l$?(B pair $B$r(B reduction $B$9$k(B. |
|
|
Sminimal $B$O(B [(Homogenize_vec) 0] system_variable $B$K$9$k$h$&$G(B, |
Sminimal $B$O(B [(Homogenize_vec) 0] system_variable $B$K$9$k$h$&$G(B, |
$B$3$l$,(B cohomology $B$N7W;;$K$O<YKb(B. |
$B$3$l$,(B cohomology $B$N7W;;$K$O<YKb(B. |
|
|
|
August 2, 2000. |
|
|
|
Sminimal $B$O(B [(Homogenize_vec) 0] system_variable $B$K$9$k$h$&$G(B, |
|
$B$3$l$,(B cohomology $B$N7W;;$K$O<YKb(B. |
|
( cf. $BBg0$5W;a$N%9%/%j%W%H(B. $B8=:_?@8M$KBZ:_Cf(B. ) |
|
|
|
/restoreEnvAfterResolution { |
|
[(AvoidTheSameRing)] pushEnv |
|
[ [(AvoidTheSameRing) 0] system_variable |
|
[(gbListTower) [[ ]] (list) dc] system_variable |
|
] pop popEnv |
|
setupEnvForResolution.opts restoreOptions <=== $BJQ99(B. opts $B$O$$$m$s$J$H$3$m$G;H$C$F$k(B. |
|
} def |
|
|
|
$B$3$N%^%/%m$r$h$Y$P$$$$$N$+!)(B |
|
sm1(" restoreEnvAfterResolution "); |
|
$B$r(B Sminimal $B$N$*$o$j$K8F$V$h$&$KJQ$($?(B. |
|
test17b(), test18() $B$O@5>oF0:n(B. |
|
|
|
|
|
August 7, Mon 13:00JST ( 5:00 St.Andrews, Scotland, 4039 $B9f<<(B) |
|
example-ja.tex $B$r=q$/$?$a$N=PNO(B. |
|
|
|
% k0 |
|
sm1>macro package : dr.sm1, 9/26,1995 --- Version 6/15, 2000. |
|
sm1>macro package : module1.sm1, 1994 -- Nov 8, 1998 |
|
This is kan/k0 Version 1998,12/15 |
|
WARNING: This is an EXPERIMENTAL version |
|
sm1>var.sm1 : Version 3/7, 1997 |
|
|
|
|
|
In(1)=Loading startup files (startup.k) 1997, 3/11. |
|
sm1 version = 3.000726 |
|
Default ring is Z[x,h]. |
|
WARNING(sm): You rewrited the protected symbol pushVariables. |
|
WARNING(sm): You rewrited the protected symbol popVariables. |
|
In(2)=load["minimal-test.k"];; |
|
cpp: -lang-c++: linker input file unused since linking not done |
|
cpp: -lang-c++: linker input file unused since linking not done |
|
cohom.sm1 is the top of an experimental package to compute restrictions |
|
of all degrees based on restall.sm1 and restall_s.sm1 |
|
See, http://www.math.kobe-u.ac.jp to get these files of the latest version. |
|
Note that the package b-function.sm1 cannot be used with this package. |
|
r-interface.sm1 (C) N.Takayama, restriction, deRham |
|
|
|
oxasir.sm1, --- open asir protocol module 3/1 1998, 6/5 1999 |
|
asirconnect, asir, fctr, primadec, (C) M.Noro, N.Takayama |
|
ox.sm1, --- open sm1 protocol module 11/11,1999 (C) N.Takayama. oxhelp for help |
|
hol.sm1, basic package for holonomic systems (C) N.Takayama, 2000, 06/08 |
|
rank characteristic ch rrank gb pgb syz genericAnn annfs gb_h syz_h isSameIdeal isSameIdeal_h |
|
sm1>gkz.sm1 generates gkz systems (C) N.Takayama, 1998, 11/8, cf. rrank in hol.sm1 |
|
gkz |
|
sm1>appell.sm1 generates Appell hypergeometric differential equations (C) N.Takayama, 1998, 11/8, cf. rank in hol.sm1 |
|
appell1 appell4 |
|
sm1>resol0.sm1, package to construct schreyer resolutions -- not minimal |
|
(C) N.Takayama, 1999, 5/18. resol0, resol1 |
|
complex.sm1 : 1999, 9/28, res-div, res-solv, res-kernel-image, res-dual |
|
2000, 6/8, isExact_h, isExact |
|
In this package, complex is expressed in terms of matrices. |
|
restall.sm1 ... compute all the cohomology groups of the restriction |
|
of a D-module to tt = (t_1,...,t_d) = (0,...,0). |
|
non-Schreyer Version: 19980415 by T.Oaku |
|
usage: [(P1)...] [(t1)...] bfm --> the b-function |
|
[(P1)...] [(t1)...] k0 k1 deg restall --> cohomologies of restriction |
|
[(P1)...] [(t1)...] intbfm --> the b-function for integration |
|
[(P1)...] [(t1)...] k0 k1 deg intall --> cohomologies of integration |
|
restall_s.sm1...compute all the cohomology groups of the restriction |
|
of a D-module to tt = (t_1,...,t_d) = (0,...,0). |
|
Schreyer Version: 19990521 by N.Takayama & T.Oaku |
|
usage: [(P1)...] [(t1)...] k0 k1 deg restall_s -> cohomologies of restriction |
|
[(P1)...] [(t1)...] k0 k1 deg intall_s --> cohomologies of integration |
|
No truncation from below in restall |
|
The variable Schreyer is set to 2. |
|
Loading tower.sm1 in the standard context. You cannot use Schyrer 1. It is controlled from cohom.sm1 |
|
|
|
oxpath.oxlog.xterm is set to /home/nobuki/OpenXM/lib/sm1/bin/oxlog |
|
In(3)=a=Sannfs2("x^3-y^2"); |
|
Starting ox_asir server. |
|
Hello from open. serverName is localhost and portnumber is 0 |
|
Done the initialization. port =1024 |
|
Hello from open. serverName is localhost and portnumber is 0 |
|
Done the initialization. port =1025 |
|
[ 7 , 1025 , 6 , 1024 ] |
|
[1] 250 |
|
Trying to accept from localhost... len= 16 |
|
4 2 7f 0 0 1 0 0 0 0 0 0 0 0 8 0 |
|
Authentification: localhost is allowed to be accepted. |
|
Accepted. |
|
Trying to accept from localhost... len= 16 |
|
4 3 7f 0 0 1 0 0 0 0 0 0 0 0 6 0 |
|
Authentification: localhost is allowed to be accepted. |
|
Accepted. |
|
|
|
Control port 1024 : Connected. |
|
|
|
Stream port 1025 : Connected. |
|
Byte order for control process is network byte order. |
|
Byte order for engine process is network byte order. |
|
WeightOfSweyl=[ x , -1 , y , -1 , Dx , 1 , Dy , 1 ] |
|
Automatic homogenization. |
|
[ -2*x*Dx , -3*y*Dx^2 , -9*y^2*Dx*Dy , -27*y^3*Dy^2 ] |
|
Warning: Homogenization and ReduceLowerTerms options are automatically turned off. |
|
....Done. betti=4 |
|
Warning: Homogenization and ReduceLowerTerms options are automatically turned ON. |
|
Warning: Homogenization and ReduceLowerTerms options are automatically turned off. |
|
.Done. betti=1 |
|
Warning: Homogenization and ReduceLowerTerms options are automatically turned ON. |
|
Warning: Homogenization and ReduceLowerTerms options are automatically turned off. |
|
Done. betti=0 |
|
Warning: Homogenization and ReduceLowerTerms options are automatically turned ON. |
|
rf= [ |
|
[ |
|
[ |
|
[ -9*y^2*Dy , 0 , 2*x , 0 ] |
|
[ 0 , 0 , -3*y*Dy , Dx ] |
|
[ 0 , -3*y*Dy , Dx , 0 ] |
|
[ -3*y*Dx , 2*x , 0 , 0 ] |
|
] |
|
[ |
|
[ -Dx , 0 , 0 , 3*y*Dy ] |
|
] |
|
[ ] |
|
] |
|
[ |
|
[ -2*x*Dx , -3*y*Dx^2 , -9*y^2*Dx*Dy , -27*y^3*Dy^2 ] |
|
[ -9*y^2*Dy , -3*es^2*y*Dy , -3*es*y*Dy , -3*y*Dx ] |
|
[ -Dx ] |
|
] |
|
[ |
|
[ ] |
|
[ |
|
[ |
|
[ 0 , 2 ] |
|
[ -9*y^2*Dy , 2*x ] |
|
] |
|
[ |
|
[ 2 , 3 ] |
|
[ -3*y*Dy , Dx ] |
|
] |
|
[ |
|
[ 1 , 2 ] |
|
[ -3*y*Dy , Dx ] |
|
] |
|
[ |
|
[ 0 , 1 ] |
|
[ -3*y*Dx , 2*x ] |
|
] |
|
] |
|
[ |
|
[ |
|
[ 0 , 3 ] |
|
[ -Dx , 3*y*Dy ] |
|
] |
|
] |
|
[ ] |
|
] |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , -9*y^2*Dx*Dy-3*y*Dx*h^2-4*x^2*Dy*h , -27*y^3*Dy^2-27*y^2*Dy*h^2+3*y*h^4+8*x^3*Dy*h ] |
|
] |
|
] |
|
Generating reduction table which gives an order of reduction. |
|
WeghtOfSweyl=[ x , -1 , y , -1 , Dx , 1 , Dy , 1 ] |
|
tower[ [ -2*x*Dx , -3*y*Dx^2 , -9*y^2*Dx*Dy , -27*y^3*Dy^2 ] , [ -9*y^2*Dy , -3*es^2*y*Dy , -3*es*y*Dy , -3*y*Dx ] , [ -Dx ] ] |
|
reductionTable= [ |
|
[ 1 , 2 , 3 , 4 ] |
|
[ 3 , 4 , 3 , 2 ] |
|
[ 3 ] |
|
] |
|
[ 0 , 0 ] |
|
Processing [level,i]= [ 0 , 0 ] Strategy = 1 |
|
[ 0 , 1 ] |
|
Processing [level,i]= [ 0 , 1 ] Strategy = 2 |
|
[ 1 , 3 ] |
|
Processing [level,i]= [ 1 , 3 ] Strategy = 2 |
|
SpairAndReduction: |
|
[ p and bases , [ [ 0 , 1 ] , [ -3*y*Dx , 2*x ] ] , [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , %[null] , %[null] ] ] |
|
[ level= , 1 ] |
|
[ tower2= , [ [ ] ] ] |
|
[ -3*y*Dx , 2*es*x ] |
|
[gi, gj] = [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h ] |
|
1 |
|
Reduce the element 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h |
|
by [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , %[null] , %[null] ] |
|
result is [ 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , 1 , [ 0 , 0 , 0 , 0 ] ] |
|
vdegree of the original = 0 |
|
vdegree of the remainder = 0 |
|
[ 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , [ -3*y*Dx , 2*x , 0 , 0 ] , 3 , 2 , 0 , 0 ] |
|
[ 0 , 2 ] |
|
Processing [level,i]= [ 0 , 2 ] Strategy = 3 |
|
[ 1 , 0 ] |
|
Processing [level,i]= [ 1 , 0 ] Strategy = 3 |
|
SpairAndReduction: |
|
[ p and bases , [ [ 0 , 2 ] , [ -9*y^2*Dy , 2*x ] ] , [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , %[null] ] ] |
|
[ level= , 1 ] |
|
[ tower2= , [ [ ] ] ] |
|
[ 9*y^2*Dy , 2*es^2*x ] |
|
[gi, gj] = [ -2*x*Dx-3*y*Dy+h^2 , 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ] |
|
1 |
|
Reduce the element -27*y^3*Dy^2+6*x*y*Dx*h^2-18*y^2*Dy*h^2+8*x^3*Dy*h |
|
by [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , %[null] ] |
|
result is [ 27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h , -1 , [ -3*y*h^2 , 0 , 0 , 0 ] ] |
|
vdegree of the original = -1 |
|
vdegree of the remainder = -1 |
|
[ 27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h , [ -9*y^2*Dy-3*y*h^2 , 0 , -2*x , 0 ] , 0 , 3 , -1 , -1 ] |
|
[ 1 , 2 ] |
|
Processing [level,i]= [ 1 , 2 ] Strategy = 3 |
|
SpairAndReduction: |
|
[ p and bases , [ [ 1 , 2 ] , [ -3*y*Dy , Dx ] ] , [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , 27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ] ] |
|
[ level= , 1 ] |
|
[ tower2= , [ [ ] ] ] |
|
[ 3*es*y*Dy , es^2*Dx ] |
|
[gi, gj] = [ -3*y*Dx^2+2*x*Dy*h , 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ] |
|
1 |
|
Reduce the element -6*y*Dx^2*h^2+4*x^2*Dx*Dy*h+6*x*y*Dy^2*h+8*x*Dy*h^3 |
|
by [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , 27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ] |
|
result is [ 0 , 1 , [ 2*x*Dy*h , -2*h^2 , 0 , 0 ] ] |
|
vdegree of the original = 1 |
|
vdegree of the remainder = %[null] |
|
[ 0 , [ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] , 2 , -1 , 1 , %[null] ] |
|
[ 2 , 0 ] |
|
Processing [level,i]= [ 2 , 0 ] Strategy = 3 |
|
SpairAndReduction: |
|
[ p and bases , [ [ 0 , 3 ] , [ -Dx , 3*y*Dy ] ] , [ [ 9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ] , %[null] , [ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] , [ 3*y*Dx , -2*x , 1 , 0 ] ] ] |
|
[ level= , 2 ] |
|
[ tower2= , [ [ -2*x*Dx , -3*y*Dx^2 , -9*y^2*Dx*Dy , -27*y^3*Dy^2 ] ] ] |
|
[ Dx , -3*es^3*y*Dy ] |
|
[gi, gj] = [ 9*y^2*Dy+2*es^2*x+es^3+3*y*h^2 , 3*y*Dx-2*es*x+es^2 ] |
|
1 |
|
Reduce the element 6*es*x*y*Dy+2*es^2*x*Dx-3*es^2*y*Dy+es^3*Dx-6*y*Dx*h^2+2*es^2*h^2 |
|
by [ [ 9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ] , %[null] , [ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] , [ 3*y*Dx , -2*x , 1 , 0 ] ] |
|
result is [ -3*es^2*y*Dy+es^3*Dx+4*es^2*h^2-4*x^2*Dy*h , 1 , [ 0 , 0 , -2*x , 2*h^2 ] ] |
|
vdegree of the original = 0 |
|
vdegree of the remainder = 0 |
|
[ -3*es^2*y*Dy+es^3*Dx+4*es^2*h^2-4*x^2*Dy*h , [ Dx , 0 , -2*x , -3*y*Dy+2*h^2 ] , 0 , 1 , 0 , 0 ] |
|
[ 0 , 3 ] |
|
Processing [level,i]= [ 0 , 3 ] Strategy = 4 |
|
[ 1 , 1 ] |
|
Processing [level,i]= [ 1 , 1 ] Strategy = 4 |
|
Betti numbers are ------ |
|
[ 2 , 1 , 0 ] |
|
[seq,level,q]=[ 3 , 1 , 1 ] |
|
[ level, q = , 1 , 1 ] |
|
bases= |
|
[ |
|
[ -Dx , 1 , 2*x , 3*y*Dy-2*h^2 ] |
|
] |
|
dr= |
|
[ Dx , -1 , -2*x , -3*y*Dy+2*h^2 ] |
|
newbases= |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
] |
|
[seq,level,q]=[ 2 , 0 , 3 ] |
|
[ level, q = , 0 , 3 ] |
|
bases= |
|
[ |
|
[ 9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ] |
|
[ -4*x^2*Dy*h , 0 , -3*y*Dy+4*h^2 , Dx ] |
|
[ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] |
|
[ 3*y*Dx , -2*x , 1 , 0 ] |
|
] |
|
dr= |
|
[ -9*y^2*Dy-3*y*h^2 , 0 , -2*x , -1 ] |
|
newbases= |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
[ -9*y^2*Dx*Dy-3*y*Dx*h^2-4*x^2*Dy*h , 0 , -2*x*Dx-3*y*Dy+2*h^2 , 0 ] |
|
[ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] |
|
[ 3*y*Dx , -2*x , 1 , 0 ] |
|
] |
|
[seq,level,q]=[ 1 , 0 , 2 ] |
|
[ level, q = , 0 , 2 ] |
|
bases= |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
[ -9*y^2*Dx*Dy-3*y*Dx*h^2-4*x^2*Dy*h , 0 , -2*x*Dx-3*y*Dy+2*h^2 , 0 ] |
|
[ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] |
|
[ 3*y*Dx , -2*x , 1 , 0 ] |
|
] |
|
dr= |
|
[ -3*y*Dx , 2*x , -1 , 0 ] |
|
newbases= |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
[ 6*x*y*Dx^2-4*x^2*Dy*h , -4*x^2*Dx-6*x*y*Dy , 0 , 0 ] |
|
[ -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy , 0 , 0 ] |
|
[ 0 , 0 , 0 , 0 ] |
|
] |
|
[ level= , 0 ] |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 ] |
|
[ -3*y*Dx^2+2*x*Dy*h ] |
|
] |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 ] |
|
[ -3*y*Dx^2+2*x*Dy*h ] |
|
] |
|
[ level= , 1 ] |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
[ -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy , 0 , 0 ] |
|
[ 0 , 0 , 0 , 0 ] |
|
] |
|
[ |
|
[ 0 , 0 ] |
|
[ -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy ] |
|
[ 0 , 0 ] |
|
] |
|
[ level= , 2 ] |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
] |
|
[ |
|
[ 0 , 0 , 0 ] |
|
] |
|
------------ Note ----------------------------- |
|
To get shift vectors, use Reparse and SgetShifts(resmat,w) |
|
To get initial of the complex, use Reparse and Sinit_w(resmat,w) |
|
0: minimal resolution, 3: Schreyer resolution |
|
------------ Resolution Summary -------------- |
|
Betti numbers : [ 2 , 1 ] |
|
Betti numbers of the Schreyer frame: [ 4 , 4 , 1 ] |
|
----------------------------------------------- |
|
In(4)=sm1_pmat(a); |
|
[ |
|
[ |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 ] |
|
[ -3*y*Dx^2+2*x*Dy*h ] |
|
] |
|
[ |
|
[ -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy ] |
|
] |
|
] |
|
[ |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 ] |
|
[ -3*y*Dx^2+2*x*Dy*h ] |
|
] |
|
[ |
|
[ 0 , 0 ] |
|
[ -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy ] |
|
[ 0 , 0 ] |
|
] |
|
[ |
|
[ 0 , 0 , 0 ] |
|
] |
|
] |
|
[ |
|
[ |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 ] |
|
[ -3*y*Dx^2+2*x*Dy*h ] |
|
[ 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ] |
|
[ 27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ] |
|
] |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
[ 6*x*y*Dx^2-4*x^2*Dy*h , -4*x^2*Dx-6*x*y*Dy , 0 , 0 ] |
|
[ -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy , 0 , 0 ] |
|
[ 0 , 0 , 0 , 0 ] |
|
] |
|
[ |
|
[ 0 , 0 , 0 , 0 ] |
|
] |
|
] |
|
[ |
|
[ 0 , 0 , 1 , 2 ] |
|
[ 0 , 3 , 0 , 0 ] |
|
[ 0 ] |
|
] |
|
[ |
|
[ %[null] , %[null] , [ -3*y*Dx , 2*x , -1 , 0 ] , [ -9*y^2*Dy-3*y*h^2 , 0 , -2*x , -1 ] ] |
|
[ %[null] , [ Dx , -1 , -2*x , -3*y*Dy+2*h^2 ] , %[null] , %[null] ] |
|
[ %[null] ] |
|
] |
|
[ 1 , 4 , 4 , 1 ] |
|
[ |
|
[ 0 , 0 , 1 , 2 ] |
|
[ 0 , 3 , %[null] , 0 ] |
|
[ 0 ] |
|
] |
|
] |
|
[ |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 ] |
|
[ -3*y*Dx^2+2*x*Dy*h ] |
|
[ 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ] |
|
[ 27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ] |
|
] |
|
[ |
|
[ 9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ] |
|
[ -4*x^2*Dy*h , 0 , -3*y*Dy+4*h^2 , Dx ] |
|
[ 2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ] |
|
[ 3*y*Dx , -2*x , 1 , 0 ] |
|
] |
|
[ |
|
[ -Dx , 1 , 2*x , 3*y*Dy-2*h^2 ] |
|
] |
|
] |
|
[ |
|
[ |
|
[ |
|
[ -9*y^2*Dy , 0 , 2*x , 0 ] |
|
[ 0 , 0 , -3*y*Dy , Dx ] |
|
[ 0 , -3*y*Dy , Dx , 0 ] |
|
[ -3*y*Dx , 2*x , 0 , 0 ] |
|
] |
|
[ |
|
[ -Dx , 0 , 0 , 3*y*Dy ] |
|
] |
|
[ ] |
|
] |
|
[ |
|
[ -2*x*Dx , -3*y*Dx^2 , -9*y^2*Dx*Dy , -27*y^3*Dy^2 ] |
|
[ -9*y^2*Dy , -3*es^2*y*Dy , -3*es*y*Dy , -3*y*Dx ] |
|
[ -Dx ] |
|
] |
|
[ |
|
[ ] |
|
[ |
|
[ |
|
[ 0 , 2 ] |
|
[ -9*y^2*Dy , 2*x ] |
|
] |
|
[ |
|
[ 2 , 3 ] |
|
[ -3*y*Dy , Dx ] |
|
] |
|
[ |
|
[ 1 , 2 ] |
|
[ -3*y*Dy , Dx ] |
|
] |
|
[ |
|
[ 0 , 1 ] |
|
[ -3*y*Dx , 2*x ] |
|
] |
|
] |
|
[ |
|
[ |
|
[ 0 , 3 ] |
|
[ -Dx , 3*y*Dy ] |
|
] |
|
] |
|
[ ] |
|
] |
|
[ |
|
[ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , -9*y^2*Dx*Dy-3*y*Dx*h^2-4*x^2*Dy*h , -27*y^3*Dy^2-27*y^2*Dy*h^2+3*y*h^4+8*x^3*Dy*h ] |
|
] |
|
] |
|
] |
|
In(5)= |
|
|