version 1.1, 2000/08/02 03:23:36 |
version 1.2, 2000/08/02 05:14:30 |
|
|
% $OpenXM$ |
% $OpenXM: OpenXM/src/k097/lib/minimal/example-ja.tex,v 1.1 2000/08/02 03:23:36 takayama Exp $ |
\documentclass[12pt]{jarticle} |
\documentclass[12pt]{jarticle} |
\newtheorem{example}{Example} |
\newtheorem{example}{Example} |
\def\pd#1{ \partial_{#1} } |
\def\pd#1{ \partial_{#1} } |
Line 39 tie-breaking order $B$K$b0MB8$9$k(B. |
|
Line 39 tie-breaking order $B$K$b0MB8$9$k(B. |
|
\item $BB?9`<0(B $f$ $B$N(B $b$-$B4X?t$N:G>.@0?t:,$r(B $-r$ $B$H$9$k$H$-(B |
\item $BB?9`<0(B $f$ $B$N(B $b$-$B4X?t$N:G>.@0?t:,$r(B $-r$ $B$H$9$k$H$-(B |
${\rm Ann}(D f^{-1})$ $B$G(B |
${\rm Ann}(D f^{-1})$ $B$G(B |
$1/f^r$ $B$rNm2=$9$k(B $D$ $B$N%$%G%"%k$N$"$k@8@.85$N=89g$r$"$i$o$9(B. |
$1/f^r$ $B$rNm2=$9$k(B $D$ $B$N%$%G%"%k$N$"$k@8@.85$N=89g$r$"$i$o$9(B. |
$B2<$N<BNc$G$O4X?t(B {\tt Sannfs(f,v)} $B$N=PNO$r$"$i$o$9(B. |
$B2<$N<BNc$N>l9g$G$O4X?t(B {\tt Sannfs(f,v)} $B$N=PNO$r$"$i$o$9(B. |
\item $F(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r$"$i$o$9(B. |
\item $F(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r$"$i$o$9(B. |
\item $F^h(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r(B homogenize $B$7$?$b$N$r$"$i$o$9(B. |
\item $F^h(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r(B homogenize $B$7$?$b$N$r$"$i$o$9(B. |
\item Grothendieck $B$NHf3SDjM}$K$h$l$P(B |
\item Grothendieck $B$NHf3SDjM}$K$h$l$P(B |
Line 61 $$ -2x\pd{x}-3y\pd{y}+h^2 , -3y\pd{x}^2+2x\pd{y}h $$ |
|
Line 61 $$ -2x\pd{x}-3y\pd{y}+h^2 , -3y\pd{x}^2+2x\pd{y}h $$ |
|
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
\hline |
\hline |
Resolution type & Betti numbers \\ \hline |
Resolution type & Betti numbers \\ \hline |
Schreyer & 2, 1 \\ \hline |
Schreyer & 1, 4, 4, 1 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 4, 4, 1 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 1, 2, 1 \\ \hline |
minimal & 2, 1 \\ |
minimal & 1, 2, 1 \\ |
\hline |
\hline |
\end{tabular} |
\end{tabular} |
|
|
Line 112 $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2} \ |
|
Line 112 $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2} \ |
|
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
\hline |
\hline |
Resolution type & Betti numbers \\ \hline |
Resolution type & Betti numbers \\ \hline |
Schreyer & 4, 5, 2 \\ \hline |
Schreyer & 1, 8, 16, 11, 2 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 8, 16, 11, 2 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 1, 4, 5, 2 \\ \hline |
minimal & 4, 5, 2 \\ |
minimal & 1, 4, 5, 2 \\ |
\hline |
\hline |
\end{tabular} |
\end{tabular} |
|
|
Line 154 $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3+y^3+z^3} |
|
Line 154 $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3+y^3+z^3} |
|
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
\hline |
\hline |
Resolution type & Betti numbers \\ \hline |
Resolution type & Betti numbers \\ \hline |
Schreyer & \\ \hline |
Schreyer & 1, 12, 44, 75, 70, 39, 13, 2 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & \\ \hline |
$(-1,-2,-3,1,2,3)$-minimal & 1, 4, 5, 2 \\ \hline |
minimal & \\ |
minimal & 1, 4, 5, 2 \\ |
\hline |
\hline |
\end{tabular} |
\end{tabular} |
|
|
\noindent |
\noindent |
$(-{\bf 1},{\bf 1})$-minimal resolution |
$(-1,-2,-3,1,2,3)$-minimal resolution |
{\footnotesize \begin{verbatim} |
{\footnotesize \begin{verbatim} |
|
[ |
|
[ |
|
[ x*Dx+y*Dy+z*Dz-3*h^2 ] |
|
[ y*Dz^2-z*Dy^2 ] |
|
[ x*Dz^2-z*Dx^2 ] |
|
[ x*Dy^2-y*Dx^2 ] |
|
] |
|
[ |
|
[ 0 , -x , y , -z ] |
|
[ -x*Dz^2+z*Dx^2 , x*Dy , x*Dx+z*Dz-3*h^2 , z*Dy ] |
|
[ -x*Dy^2+y*Dx^2 , -x*Dz , y*Dz , x*Dx+y*Dy-3*h^2 ] |
|
[ -y*Dz^2+z*Dy^2 , x*Dx+y*Dy+z*Dz-2*h^2 , 0 , 0 ] |
|
[ 0 , Dx^2 , -Dy^2 , Dz^2 ] |
|
] |
|
[ |
|
[ -x*Dx+3*h^2 , y , -z , -x , 0 ] |
|
[ -Dz^3-Dy^3 , -Dy^2 , Dz^2 , Dx^2 , -x*Dx-y*Dy-z*Dz ] |
|
] |
|
] |
|
Degree shifts |
|
[ [ 0 ] , [ 0 , 4 , 5 , 3 ] , [ 3 , 5 , 6 , 4 , 9 ] ] |
\end{verbatim}} |
\end{verbatim}} |
\end{example} |
\end{example} |
|
|
Line 176 $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2+y^ |
|
Line 196 $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2+y^ |
|
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
\hline |
\hline |
Resolution type & Betti numbers \\ \hline |
Resolution type & Betti numbers \\ \hline |
Schreyer & \\ \hline |
Schreyer & 1, 13, 43, 50, 21, 2 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 1, 7, 10, 4 \\ \hline |
minimal & \\ |
minimal & 1, 7, 10, 4 \\ |
\hline |
\hline |
\end{tabular} |
\end{tabular} |
|
|
\noindent |
\noindent |
$(-{\bf 1},{\bf 1})$-minimal resolution |
$f=x^3-y^2z^2+y^2+z^2$ $B$H$*$$$?>l9g(B, |
{\footnotesize \begin{verbatim} |
$B6u4V(B ${\bf C}^3 \setminus V(f)$ $B$N(B |
|
$B%3%[%b%m%872$N<!85$O(B |
\end{verbatim}} |
${\rm dim}\, H^i = 1$, $(i=0, 1)$, |
$B%3%[%b%m%872$O(B ... $B$H$J$k(B. |
${\rm dim}\, H^i = 0$, $(i=2, 3)$, |
$B9M$($k@~7A6u4V$NJ#BN$N<!85$O(B, ... |
$B$H$J$k(B. |
Schreyer resolution $B$+$i%9%?!<%H$7$F(B, |
$B$3$N>l9g(B $D/I$ $B$N(B |
|
$b$-$B4X?t$N:GBg@0?t:,$O(B $2$ $B$H$J$j(B, |
|
$B%3%[%b%m%8$r7W;;$9$k$?$a$K(B |
|
$B9M$($k@~7A6u4V$NJ#BN$N<!85$O(B, $10, 12, 9, 4$ $B$G$"$k(B. %%Prog: Srestall.sm1 |
|
$B0lJ}(B Schreyer resolution $B$+$i%9%?!<%H$7$F(B, |
$B@~7A6u4V$NJ#BN$r9M$($k$H(B, $B$=$N<!85$O(B |
$B@~7A6u4V$NJ#BN$r9M$($k$H(B, $B$=$N<!85$O(B |
... $B$H$J$k(B. |
130, 1078, 1667, 749, 40 $B$H$J$k(B. %%Prog: test21b() |
\end{example} |
\end{example} |
|
|
\begin{example} \rm |
\begin{example} \rm |
%Prog: minimal-test.k test20() |
%Prog: minimal-test.k test20() |
$I = D\cdot\{ x_1*\pd{1}+2x_2\pd{2}+3x_3\pd{3} , |
$I = D\cdot\{ x_1\pd{1}+2x_2\pd{2}+3x_3\pd{3} , |
\pd{1}^2-\pd{2}*h, |
\pd{1}^2-\pd{2}h, |
-\pd{1}\pd{2}+\pd{3}*h, |
-\pd{1}\pd{2}+\pd{3}h, |
\pd{2}^2-\pd{1}\pd{3} \} |
\pd{2}^2-\pd{1}\pd{3} \} |
$ $B$N>l9g(B. |
$ $B$N>l9g(B. |
$B$3$l$O(B $A=(1,2,3)$, $\beta=0$ $B$KIU?o$9$k(B GKZ $BD64v2?7O$N(B |
$B$3$l$O(B $A=(1,2,3)$, $\beta=0$ $B$KIU?o$9$k(B GKZ $BD64v2?7O$N(B |
|
|
\begin{tabular}{|l|l|} |
\begin{tabular}{|l|l|} |
\hline |
\hline |
Resolution type & Betti numbers \\ \hline |
Resolution type & Betti numbers \\ \hline |
Schreyer & 4, 5, 2 \\ \hline |
Schreyer & 1, 10, 25, 23, 8, 1 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 10, 25, 23, 8, 1 \\ \hline |
$(-{\bf 1},{\bf 1})$-minimal & 1, 4, 5, 2 \\ \hline |
minimal & 4, 5, 2 \\ |
minimal & 1, 4, 5, 2 \\ |
\hline |
\hline |
\end{tabular} |
\end{tabular} |
|
|