version 1.1, 2000/05/06 07:58:37 |
version 1.2, 2000/05/07 02:10:44 |
|
|
$OpenXM$ |
$OpenXM: OpenXM/src/k097/lib/minimal/debug-note.txt,v 1.1 2000/05/06 07:58:37 takayama Exp $ |
|
|
|
minimal.k $B$O(B V-minimal free resolution $B$r9=@.$9$k(B |
|
$B%W%m%0%i%`$G(B openxm version 1.1.2 $B0J>e$GF0:n(B. |
|
( $BI,MW$J(B component $B$O(B k0, ox_asir ) |
|
openxm $B$K$D$$$F$O(B, http://www.openxm.org $B$r;2>H(B. |
|
|
|
$B8=:_(B, $B$$$A$*$&(B error $B$J$/$H$^$j(B, V-minimal free resolution |
|
$B$i$7$-$b$N$r9=@.$9$k$H$$$&$@$1$G(B, $B?t3XE*$J@5$7$5$N%A%'%C%/$O(B |
|
$B$^$@(B. |
|
|
|
$B;H$$J}(B |
|
|
|
k0 ( k0 $B%$%s%?%W%j%?$r%9%?!<%H(B ) |
|
load["minimal.k"];; (minimal.k $B$r%m!<%I(B) |
|
|
|
$BNc(B 1: Sminimal_v $B$O(B, V-minimal free resolution $B$r(B, Schreyer resolution |
|
$B$rJQ7A$7$F$$$C$F5a$a$k(B. (Sminimal $B$O(B LaScala-Stillman's algorithm |
|
$B$r;H$&(B: $B$^$@(B negative weight vector $B$G$-$A$s$H$&$4$+$J$$(B.) |
|
|
|
Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); |
|
v=[[2*x*Dx + 3*y*Dy+6, 0], |
|
[3*x^2*Dy + 2*y*Dx, 0], |
|
[0, x^2+y^2], |
|
[0, x*y]]; |
|
a=Sminimal_v(v); |
|
sm1_pmat(a[0]); b=a[0]; b[1]*b[0]: |
|
|
|
$B%N!<%H(B: a[0] is the V-minimal resolution. a[3] is the Schreyer resolution. |
|
|
|
$BNc(B 2: |
|
a=Sannfs3("x^3-y^2*z^2"); |
|
b=a[0]; sm1_pmat(b); |
|
b[1]*b[0]: b[2]*b[1]: ===> complex $B$G$"$k$3$H$N$?$7$+$a(B. |
|
|
|
x^3-y^2*z^2 $B$N(B annihilating ideal $B$N(B laplace $BJQ49$N(B V-minimal free resolution. |
|
Weight $B$O(B (-1,-1,-1,1,1,1). |
|
|
|
$B$A$J$_$K(B, |
|
Map(a[3],"Length"): $B$O(B 8, 17, 13, 3 (Schreyer resolution $B$N(B betti $B?t(B). |
|
Map(a[0],"Length"): $B$O(B 4, 6, 2 (V-minimal resolution $B$N(B betti $B?t(B). |
|
|
|
|
|
|
|
------- $B%F%9%H%G!<%?=8(B |
|
|
a=Sannfs2("x*y*(x-y)*(x+y)"); |
a=Sannfs2("x*y*(x-y)*(x+y)"); |
|
|
Correct answer by check.sm1 foo3; |
a=testAnnfs3("x*y*z*(x+y+z-1)"); |
es^2*x^2*Dx*Dy+es^3*y*Dx^2-es*y^3*Dy^2+4*x^2*y*Dy^4-es^3*y*Dy^2+8*x*y*Dx*Dy^2*h^2+2*es*y^2*Dy*h^2+4*x^2*Dy^3*h^2-24*y^2*Dy^3*h^2-2*es*y*h^4-8*y*Dy^2*h^4 |
V-minimal $B$K$b(B 1 $B$,@.J,$H$7$F$N$3$k$b$N$"$j(B. |
by g=[ es^2*x^2*Dy+es^3*y*Dx-es^2*y^2*Dy+es^3*x*Dy+8*x*y*Dy^2*h^2+2*es^2*y*h^2 , es*y*Dy-es^2*Dx-4*y*Dy^3-es*h^2 , -4*y^2*Dy^2-es^2*x-es^3 , -es*x^2*Dy^2-es^3*Dx^2+es*y^2*Dy^2+es^3*Dy^2-8*x*Dx*Dy^2*h^2-2*es*y*Dy*h^2+24*y*Dy^3*h^2+2*es*h^4+8*Dy^2*h^4 , 4*y*Dx*Dy+es*x+es^2 , 4*x*y*Dy^3-es^3*Dx+es^2*y*Dy-2*es^2*h^2 ] |
|
|
|
Two bases are wrong. |
a=testAnnfs2("x^3-y^2-x-1"); |
In(15)=g2[4]: |
|
-4*y*Dx*Dy-es*x+es^2 |
a=testAnnfs3("x^3+y^3+z^3"); |
In(16)=g3[4]: |
Schreyer $B$N(B betti $B$O(B max 100 $BDxEY(B. |
4*y*Dx*Dy+es*x+es^2 |
incompatible ... $B$J$k(B error $B$,$G$k$1$I$$$$$+!)(B |
In(17)=g2[5]: |
Warning in order.c: mmLarger_tower3(): incompatible input and gbList. |
4*x*y*Dy^3-es^3*Dx-es^2*y*Dy+2*es^2*h^2 |
|
In(18)=g3[5]: |
Length of gb is 6, f is es, g is -es^6*Dy^2 |
4*x*y*Dy^3-es^3*Dx+es^2*y*Dy-2*es^2*h^2 |
Warning in order.c: mmLarger_tower3(): incompatible input and gbList. |
In(19)= |
20 $BJ,8e(B segmentation fault $B$G=*N;(B. |
|
|
|
|
|
|
|
|
-------- successful construction x^3-y^2-x |
-------- successful construction x^3-y^2-x |