=================================================================== RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v retrieving revision 1.23 retrieving revision 1.32 diff -u -p -r1.23 -r1.32 --- OpenXM/src/hgm/doc/ref-hgm.html 2017/07/12 01:32:58 1.23 +++ OpenXM/src/hgm/doc/ref-hgm.html 2020/08/24 23:24:27 1.32 @@ -2,6 +2,8 @@ <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta name="viewport" content="width=device-width,initial-scale=1.0,minimum-scale=1.0"> +<!-- for mobile friendly --> <title>References for HGM</title> <!-- Use UTF-8 譁�ュ� code--> <!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc --> </head> @@ -12,8 +14,34 @@ the Holonomic Gradient Descent Method (HGD) </h1> <h2> Papers and Tutorials</h2> <ol> -<li> F.H.Danufane, K.Ohara, N.Takayama, -Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices, +<li> M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data +<a href="https://arxiv.org/abs/1912.00396"> arxiv: 1912.00396 </a> +<li> +Anna-Laura Sattelberger, Bernd Sturmfels, +D-Modules and Holonomic Functions +<a href="https://arxiv.org/abs/1910.01395"> arxiv:1910.01395 </a> +<li> +N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, +Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, +<!-- +<a href="https://arxiv.org/abs/1903.10099"> arxiv:1903.10099 </a> --> +<a href="https://doi.org/10.1016/j.jmva.2020.104642"> jmva </a> +<li> M.Harkonen, T.Sei, Y.Hirose, +Holonomic extended least angle regression, +<a href="https://arxiv.org/abs/1809.08190"> arxiv:1809.08190 </a> +<li> S.Mano, +Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, +<a href="https://www.springer.com/jp/book/9784431558866"> +JSS Research Series in Statistics</a>, 2018. +<li> A.Kume, T.Sei, +On the exact maximum likelihood inference of Fisher窶釘ingham distributions using an adjusted holonomic gradient method, +<a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018) +<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, +Holonomic Gradient Method for Two Way Contingency Tables, +<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a> +<li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, +Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix +(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), <a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> <li> T.Koyama, An integral formula for the powered sum of the independent, identically and normally distributed random variables, @@ -47,6 +75,9 @@ region with a multivariate normal distribution, <a href="http://arxiv.org/abs/1512.06564"> arxiv:1512.06564 </a> +<li> N.Takayama, Holonomic Gradient Method (in Japanese, survey), +<a href="http://www.math.kobe-u.ac.jp/HOME/taka/2015/hgm-dic.pdf"> +hgm-dic.pdf </a> <li> N.Takayama, S.Kuriki, A.Takemura, A-Hpergeometric Distributions and Newton Polytopes, @@ -247,6 +278,6 @@ maximal Likehood estimates for the Fisher-Bingham dist <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> </ol> -<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.22 2016/11/03 23:19:18 takayama Exp $ </pre> +<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.31 2020/06/11 22:39:10 takayama Exp $ </pre> </body> </html>