===================================================================
RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v
retrieving revision 1.7
retrieving revision 1.22
diff -u -p -r1.7 -r1.22
--- OpenXM/src/hgm/doc/ref-hgm.html	2014/03/31 07:23:09	1.7
+++ OpenXM/src/hgm/doc/ref-hgm.html	2016/11/03 23:19:18	1.22
@@ -3,7 +3,7 @@
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>References for HGM</title> <!-- Use UTF-8 譁�ュ� code-->
-<!-- Do not edit this file. Edit it under misc-2012/09/keisan-1/ref.html. -->
+<!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc -->
 </head>
 <body>
 
@@ -12,6 +12,91 @@ the Holonomic Gradient Descent Method  (HGD) </h1>
 
 <h2> Papers  and Tutorials</h2>
 <ol>
+<li> H.Hashiguchi, N.Takayama, A.Takemura,
+Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
+by Holonomic Gradient Method,
+<a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a>
+
+<li> R.Vidunas, A.Takemura,
+Differential relations for the largest root distribution
+of complex non-central Wishart matrices,
+<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a>
+
+<li> S.Mano,
+The A-hypergeometric System Associated with the Rational Normal Curve and
+Exchangeable Structures,
+<a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a>
+
+<li> M.Noro,
+System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
+<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a>
+
+<li> Y.Goto, K.Matsumoto,
+Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
+<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
+
+<li>  T.Koyama,
+Holonomic gradient method for the probability content of a simplex
+region
+with a multivariate normal distribution,
+<a href="http://arxiv.org/abs/1512.06564">  arxiv:1512.06564 </a>
+
+
+<li> N.Takayama, S.Kuriki, A.Takemura, 
+A-Hpergeometric Distributions and Newton Polytopes,
+<a href="http://arxiv.org/abs/1510.02269">  arxiv:1510.02269 </a>
+
+<li> G.Weyenberg, R.Yoshida, D.Howe,
+Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
+<a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
+
+<li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
+Exact ZF Analysis and Computer-Algebra-Aided Evaluation
+in Rank-1 LoS Rician Fading,
+<a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a>
+
+<li> K.Ohara, N.Takayama,
+Pfaffian Systems of A-Hypergeometric Systems II ---
+Holonomic Gradient Method,
+<a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a>
+
+<li> T.Koyama,
+The Annihilating Ideal of the Fisher Integral,
+<a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a>
+
+<li> T.Koyama, A.Takemura,
+Holonomic gradient method for distribution function of a weighted sum
+of noncentral chi-square random variables,
+<a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a>
+
+<li> Y.Goto,
+Contiguity relations of Lauricella's F_D revisited,
+<a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a>
+
+<li>
+T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama,
+Software Packages for Holonomic Gradient Method,
+Mathematial Software --- ICMS 2014,
+4th International Conference, Proceedings.
+Edited by Hoon Hong and Chee Yap,
+Springer lecture notes in computer science 8592,
+706--712.
+<a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44199-2_105"> 
+DOI
+</a>
+
+<li>N.Marumo, T.Oaku, A.Takemura,
+Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
+<a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
+
+<li> J.Hayakawa, A.Takemura,
+Estimation of exponential-polynomial distribution by holonomic gradient descent
+<a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
+
+<li> C.Siriteanu, A.Takemura, S.Kuriki,
+MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
+<a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
+
 <li> T.Koyama, 
 Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
 <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
@@ -20,7 +105,9 @@ Holonomic Modules Associated with Multivariate Normal 
 Pfaffian Systems of A-Hypergeometric Equations I,
 Bases of Twisted Cohomology Groups,
 <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
-(major revision v2 of arxiv:1212.6103)
+(major revision v2 of arxiv:1212.6103).
+Accepted version is at
+<a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a>
 
 <li> <img src="./wakaba01.png" alt="Intro">
 <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> 
@@ -43,7 +130,8 @@ Calculation of Orthant Probabilities by the Holonomic 
 <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
 Holonomic Rank of the Fisher-Bingham System of Differential Equations,
 <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
-to appear in Journal of Pure and Applied Algebra
+Journal of Pure and Applied Algebra  (online),
+<a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
 
 <li>
 T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
@@ -66,8 +154,8 @@ Journal of Multivariate Analysis, 116 (2013), 440--455
 
 <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
 Funkcialaj Ekvacioj 56 (2013), 51--61.
-<!-- <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a> -->
-<a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a>
+<a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
+<!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
 
 <li>
 Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
@@ -76,51 +164,83 @@ Holonomic Gradient Descent  and its Application to Fis
 <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
 Advances in Applied Mathematics 47 (2011), 639--658,
 <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
+
 </ol>
 
+Early papers related to HGM. <br>
+<ol>
+<li> 
+H.Dwinwoodie, L.Matusevich, E. Mosteig, 
+Transform methods for the hypergeometric distribution,
+Statistics and Computing 14 (2004), 287--297.
+</ol>
+
+
+
 <h2> Three Steps of HGM </h2>
 <ol>
-<li> Find a holonomic system satisfied by the normalizing constant.
+<li> Finding a holonomic system satisfied by the normalizing constant.
 We may use computational or theoretical methods to find it.
 Groebner basis and related methods are used.
-<li> Find an initial value vector for the holonomic system.
+<li> Finding an initial value vector for the holonomic system.
 This is equivalent to evaluating the normalizing constant and its derivatives
 at a point.
 This step is usually performed by a series expansion.
-<li> Solve the holonomic system numerically. We use several methods
+<li> Solving the holonomic system numerically. We use several methods
 in numerical analysis such as the Runge-Kutta method of solving
 ordinary differential equations and efficient solvers of systems of linear
 equations.
 </ol>
 
 <h2> Software Packages for HGM</h2>
-Most software packages are experimental and temporary documents are found in
+
+<ul>
+<li>
+CRAN package <a href="https://cran.r-project.org/web/packages/hgm/index.html"> hgm </a> (for R).
+
+<li>
+Some software packages are experimental and temporary documents are found in
 "asir-contrib manual" (auto-autogenerated part), or 
 "Experimental Functions in Asir", or "miscellaneous and other documents"
 of the
 <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
 OpenXM documents</a>
-or in <a href="./"> this folder </a>.
-The nightly snapshot of the asir-contrib can be found in the Asir-Contrib page below,
+or in <a href="./"> this folder</a>.
+The nightly snapshot of the asir-contrib can be found in the asir page below,
 or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
-cvsweb page </a>
+cvsweb page</a>.
 <ol>
-<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> for the step 3.
-<li> yang (for Pfaffian systems) , nk_restriction (for D-module integrations), 
-tk_jack  (for Jack polynomials), ko_fb_pfaffian (Pfaffian system for the Fisher-Bingham system) 
-are for the steps 1 or 2 and in the 
-<a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a>
-<li> nk_fb_gen_c is a package to generate a C program to perform 
+<li> Command line interfaces are in the folder OpenXM/src/hgm
+in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
+OpenXM distribution page </a>.
+<li> Experimental version of <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.  
+To install this package in R, type in
+<pre>
+R CMD install hgm_*.tar.gz
+</pre>
+<li> The following packages are 
+for the computer algebra system 
+<a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
+They are in the asir-contrib collection.
+<ul>
+<li> yang.rr (for Pfaffian systems) , 
+nk_restriction.rr (for D-module integrations), 
+tk_jack.rr  (for Jack polynomials), 
+ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
+are for the steps 1 or 2.
+<li> nk_fb_gen_c.rr is a package to generate a C program to perform 
 maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
-It is in the 
-<a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a>
+<li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
+</ul>
 </ol>
 
+</ul>
+
 <h2> Programs to try examples of our papers </h2>
 <ol>
 <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
 </ol>
 
-<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.6 2014/03/28 03:02:36 takayama Exp $ </pre>
+<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.21 2016/11/03 23:05:22 takayama Exp $ </pre>
 </body>
 </html>