version 1.8, 2003/04/21 08:30:01 |
version 1.9, 2003/04/24 08:13:24 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.7 2003/04/21 03:07:32 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.8 2003/04/21 08:30:01 noro Exp $ |
\BJP |
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
Line 1354 Computation of the global b function is implemented as |
|
Line 1354 Computation of the global b function is implemented as |
|
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* primadec primedec:: |
* primadec primedec:: |
* primedec_mod:: |
* primedec_mod:: |
* bfunction generic_bfct:: |
* bfunction bfct generic_bfct:: |
@end menu |
@end menu |
|
|
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
Line 3918 execute @code{dp_gr_print(2)} in advance. |
|
Line 3918 execute @code{dp_gr_print(2)} in advance. |
|
@fref{dp_gr_flags dp_gr_print}. |
@fref{dp_gr_flags dp_gr_print}. |
@end table |
@end table |
|
|
\JP @node bfunction generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node bfunction bfct generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node bfunction generic_bfct,,, Functions for Groebner basis computation |
\EG @node bfunction bfct generic_bfct,,, Functions for Groebner basis computation |
@subsection @code{bfunction}, @code{generic_bfct} |
@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct} |
@findex bfunction |
@findex bfunction |
|
@findex bfct |
@findex generic_bfct |
@findex generic_bfct |
|
|
@table @t |
@table @t |
@item bfunction(@var{f}) |
@item bfunction(@var{f}) |
|
@item bfct(@var{f}) |
@item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
@item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
\JP :: b $B4X?t$N7W;;(B |
\JP :: b $B4X?t$N7W;;(B |
\EG :: Computes the global b function of a polynomial or an ideal |
\EG :: Computes the global b function of a polynomial or an ideal |
Line 3946 execute @code{dp_gr_print(2)} in advance. |
|
Line 3948 execute @code{dp_gr_print(2)} in advance. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
@item @code{bfunction(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B |
@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B |
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
Line 3955 execute @code{dp_gr_print(2)} in advance. |
|
Line 3957 execute @code{dp_gr_print(2)} in advance. |
|
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global b $B4X?t$r7W;;$9$k(B. |
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global b $B4X?t$r7W;;$9$k(B. |
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
$B$r=g$KJB$Y$k(B. |
$B$r=g$KJB$Y$k(B. |
|
@item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B |
|
$B0[$J$k(B. $B$I$A$i$,9bB.2=$OF~NO$K$h$k(B. |
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
\E |
\E |
\BEG |
\BEG |
@item These functions are defined in @samp{bfct}. |
@item These functions are defined in @samp{bfct}. |
@item @code{bfunction(@var{f})} computes the global b-function @code{b(s)} of |
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global b-function @code{b(s)} of |
a polynomial @var{f}. |
a polynomial @var{f}. |
@code{b(s)} is a polynomial of the minimal degree |
@code{b(s)} is a polynomial of the minimal degree |
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
Line 3969 computes the global b-function of a left ideal @code{I |
|
Line 3973 computes the global b-function of a left ideal @code{I |
|
generated by @var{plist}, with respect to @var{weight}. |
generated by @var{plist}, with respect to @var{weight}. |
@var{vlist} is the list of @code{x}-variables, |
@var{vlist} is the list of @code{x}-variables, |
@var{vlist} is the list of corresponding @code{D}-variables. |
@var{vlist} is the list of corresponding @code{D}-variables. |
|
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement |
|
different algorithms and the efficiency depends on inputs. |
@item See [Saito,Sturmfels,Takayama] for the details. |
@item See [Saito,Sturmfels,Takayama] for the details. |
\E |
\E |
@end itemize |
@end itemize |