version 1.8, 2003/04/21 08:30:01 |
version 1.18, 2016/03/24 20:58:50 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.7 2003/04/21 03:07:32 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.17 2006/09/06 23:53:31 noro Exp $ |
\BJP |
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
|
|
* $B4pK\E*$JH!?t(B:: |
* $B4pK\E*$JH!?t(B:: |
* $B7W;;$*$h$SI=<($N@)8f(B:: |
* $B7W;;$*$h$SI=<($N@)8f(B:: |
* $B9`=g=x$N@_Dj(B:: |
* $B9`=g=x$N@_Dj(B:: |
|
* Weight:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: |
* $B4pDlJQ49(B:: |
* $B4pDlJQ49(B:: |
* Weyl $BBe?t(B:: |
* Weyl $BBe?t(B:: |
|
|
* Fundamental functions:: |
* Fundamental functions:: |
* Controlling Groebner basis computations:: |
* Controlling Groebner basis computations:: |
* Setting term orderings:: |
* Setting term orderings:: |
|
* Weight:: |
* Groebner basis computation with rational function coefficients:: |
* Groebner basis computation with rational function coefficients:: |
* Change of ordering:: |
* Change of ordering:: |
* Weyl algebra:: |
* Weyl algebra:: |
Line 1055 beforehand, and some heuristic trial may be inevitable |
|
Line 1057 beforehand, and some heuristic trial may be inevitable |
|
\E |
\E |
|
|
\BJP |
\BJP |
|
@node Weight ,,, $B%0%l%V%J4pDl$N7W;;(B |
|
@section Weight |
|
\E |
|
\BEG |
|
@node Weight,,, Groebner basis computation |
|
@section Weight |
|
\E |
|
\BJP |
|
$BA0@a$G>R2p$7$?9`=g=x$O(B, $B3FJQ?t$K(B weight ($B=E$_(B) $B$r@_Dj$9$k$3$H$G(B |
|
$B$h$j0lHLE*$J$b$N$H$J$k(B. |
|
\E |
|
\BEG |
|
Term orderings introduced in the previous section can be generalized |
|
by setting a weight for each variable. |
|
\E |
|
@example |
|
[0] dp_td(<<1,1,1>>); |
|
3 |
|
[1] dp_set_weight([1,2,3])$ |
|
[2] dp_td(<<1,1,1>>); |
|
6 |
|
@end example |
|
\BJP |
|
$BC19`<0$NA4<!?t$r7W;;$9$k:](B, $B%G%U%)%k%H$G$O(B |
|
$B3FJQ?t$N;X?t$NOB$rA4<!?t$H$9$k(B. $B$3$l$O3FJQ?t$N(B weight $B$r(B 1 $B$H(B |
|
$B9M$($F$$$k$3$H$KAjEv$9$k(B. $B$3$NNc$G$O(B, $BBh0l(B, $BBhFs(B, $BBh;0JQ?t$N(B |
|
weight $B$r$=$l$>$l(B 1,2,3 $B$H;XDj$7$F$$$k(B. $B$3$N$?$a(B, @code{<<1,1,1>>} |
|
$B$NA4<!?t(B ($B0J2<$G$O$3$l$rC19`<0$N(B weight $B$H8F$V(B) $B$,(B @code{1*1+1*2+1*3=6} $B$H$J$k(B. |
|
weight $B$r@_Dj$9$k$3$H$G(B, $BF1$89`=g=x7?$N$b$H$G0[$J$k9`=g=x$,Dj5A$G$-$k(B. |
|
$BNc$($P(B, weight $B$r$&$^$/@_Dj$9$k$3$H$G(B, $BB?9`<0$r(B weighted homogeneous |
|
$B$K$9$k$3$H$,$G$-$k>l9g$,$"$k(B. |
|
\E |
|
\BEG |
|
By default, the total degree of a monomial is equal to |
|
the sum of all exponents. This means that the weight for each variable |
|
is set to 1. |
|
In this example, the weights for the first, the second and the third |
|
variable are set to 1, 2 and 3 respectively. |
|
Therefore the total degree of @code{<<1,1,1>>} under this weight, |
|
which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. |
|
By setting weights, different term orderings can be set under a type of |
|
term ordeing. In some case a polynomial can |
|
be made weighted homogeneous by setting an appropriate weight. |
|
\E |
|
|
|
\BJP |
|
$B3FJQ?t$KBP$9$k(B weight $B$r$^$H$a$?$b$N$r(B weight vector $B$H8F$V(B. |
|
$B$9$Y$F$N@.J,$,@5$G$"$j(B, $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $BA4<!?t$N(B |
|
$BBe$o$j$KMQ$$$i$l$k$b$N$rFC$K(B sugar weight $B$H8F$V$3$H$K$9$k(B. |
|
sugar strategy $B$K$*$$$F(B, $BA4<!?t$NBe$o$j$K;H$o$l$k$+$i$G$"$k(B. |
|
$B0lJ}$G(B, $B3F@.J,$,I,$:$7$b@5$H$O8B$i$J$$(B weight vector $B$O(B, |
|
sugar weight $B$H$7$F@_Dj$9$k$3$H$O$G$-$J$$$,(B, $B9`=g=x$N0lHL2=$K$O(B |
|
$BM-MQ$G$"$k(B. $B$3$l$i$O(B, $B9TNs$K$h$k9`=g=x$N@_Dj$K$9$G$K8=$l$F(B |
|
$B$$$k(B. $B$9$J$o$A(B, $B9`=g=x$rDj5A$9$k9TNs$N3F9T$,(B, $B0l$D$N(B weight vector |
|
$B$H8+$J$5$l$k(B. $B$^$?(B, $B%V%m%C%/=g=x$O(B, $B3F%V%m%C%/$N(B |
|
$BJQ?t$KBP1~$9$k@.J,$N$_(B 1 $B$GB>$O(B 0 $B$N(B weight vector $B$K$h$kHf3S$r(B |
|
$B:G=i$K9T$C$F$+$i(B, $B3F%V%m%C%/Kh$N(B tie breaking $B$r9T$&$3$H$KAjEv$9$k(B. |
|
\E |
|
|
|
\BEG |
|
A list of weights for all variables is called a weight vector. |
|
A weight vector is called a sugar weight vector if |
|
its elements are all positive and it is used for computing |
|
a weighted total degree of a monomial, because such a weight |
|
is used instead of total degree in sugar strategy. |
|
On the other hand, a weight vector whose elements are not necessarily |
|
positive cannot be set as a sugar weight, but it is useful for |
|
generalizing term order. In fact, such a weight vector already |
|
appeared in a matrix order. That is, each row of a matrix defining |
|
a term order is regarded as a weight vector. A block order |
|
is also considered as a refinement of comparison by weight vectors. |
|
It compares two terms by using a weight vector whose elements |
|
corresponding to variables in a block is 1 and 0 otherwise, |
|
then it applies a tie breaker. |
|
\E |
|
|
|
\BJP |
|
weight vector $B$N@_Dj$O(B @code{dp_set_weight()} $B$G9T$&$3$H$,$G$-$k(B |
|
$B$,(B, $B9`=g=x$r;XDj$9$k:]$NB>$N%Q%i%a%?(B ($B9`=g=x7?(B, $BJQ?t=g=x(B) $B$H(B |
|
$B$^$H$a$F@_Dj$G$-$k$3$H$,K>$^$7$$(B. $B$3$N$?$a(B, $B<!$N$h$&$J7A$G$b(B |
|
$B9`=g=x$,;XDj$G$-$k(B. |
|
\E |
|
\BEG |
|
A weight vector can be set by using @code{dp_set_weight()}. |
|
However it is more preferable if a weight vector can be set |
|
together with other parapmeters such as a type of term ordering |
|
and a variable order. This is realized as follows. |
|
\E |
|
|
|
@example |
|
[64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$ |
|
[65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0); |
|
[z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11] |
|
[66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]); |
|
[x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11] |
|
[67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]); |
|
[x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11] |
|
@end example |
|
|
|
\BJP |
|
$B$$$:$l$NNc$K$*$$$F$b(B, $B9`=g=x$O(B option $B$H$7$F;XDj$5$l$F$$$k(B. |
|
$B:G=i$NNc$G$O(B @code{v} $B$K$h$jJQ?t=g=x$r(B, @code{sugarweight} $B$K$h$j(B |
|
sugar weight vector $B$r(B, @code{order}$B$K$h$j9`=g=x7?$r;XDj$7$F$$$k(B. |
|
$BFs$DL\$NNc$K$*$1$k(B @code{order} $B$N;XDj$O(B matrix order $B$HF1MM$G$"$k(B. |
|
$B$9$J$o$A(B, $B;XDj$5$l$?(B weight vector $B$r:8$+$i=g$K;H$C$F(B weight $B$NHf3S(B |
|
$B$r9T$&(B. $B;0$DL\$NNc$bF1MM$G$"$k$,(B, $B$3$3$G$O(B weight vector $B$NMWAG$r(B |
|
$BJQ?tKh$K;XDj$7$F$$$k(B. $B;XDj$,$J$$$b$N$O(B 0 $B$H$J$k(B. $B;0$DL\$NNc$G$O(B, |
|
@code{order} $B$K$h$k;XDj$G$O9`=g=x$,7hDj$7$J$$(B. $B$3$N>l9g$K$O(B, |
|
tie breaker $B$H$7$FA4<!?t5U<-=q<0=g=x$,<+F0E*$K@_Dj$5$l$k(B. |
|
$B$3$N;XDjJ}K!$O(B, @code{dp_gr_main}, @code{dp_gr_mod_main} $B$J$I(B |
|
$B$NAH$_9~$_4X?t$G$N$_2DG=$G$"$j(B, @code{gr} $B$J$I$N%f!<%6Dj5A4X?t(B |
|
$B$G$OL$BP1~$G$"$k(B. |
|
\E |
|
\BEG |
|
In each example, a term ordering is specified as options. |
|
In the first example, a variable order, a sugar weight vector |
|
and a type of term ordering are specified by options @code{v}, |
|
@code{sugarweight} and @code{order} respectively. |
|
In the second example, an option @code{order} is used |
|
to set a matrix ordering. That is, the specified weight vectors |
|
are used from left to right for comparing terms. |
|
The third example shows a variant of specifying a weight vector, |
|
where each component of a weight vector is specified variable by variable, |
|
and unspecified components are set to zero. In this example, |
|
a term order is not determined only by the specified weight vector. |
|
In such a case a tie breaker by the graded reverse lexicographic ordering |
|
is set automatically. |
|
This type of a term ordering specification can be applied only to builtin |
|
functions such as @code{dp_gr_main()}, @code{dp_gr_mod_main()}, not to |
|
user defined functions such as @code{gr()}. |
|
\E |
|
|
|
\BJP |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
@section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B |
\E |
\E |
Line 1329 Computation of the global b function is implemented as |
|
Line 1464 Computation of the global b function is implemented as |
|
* tolexm minipolym:: |
* tolexm minipolym:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
* dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: |
|
* nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace:: |
* dp_gr_flags dp_gr_print:: |
* dp_gr_flags dp_gr_print:: |
* dp_ord:: |
* dp_ord:: |
|
* dp_set_weight dp_set_top_weight dp_weyl_set_weight:: |
* dp_ptod:: |
* dp_ptod:: |
* dp_dtop:: |
* dp_dtop:: |
* dp_mod dp_rat:: |
* dp_mod dp_rat:: |
* dp_homo dp_dehomo:: |
* dp_homo dp_dehomo:: |
* dp_ptozp dp_prim:: |
* dp_ptozp dp_prim:: |
* dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod:: |
* dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod:: |
* dp_hm dp_ht dp_hc dp_rest:: |
* dp_hm dp_ht dp_hc dp_rest:: |
* dp_td dp_sugar:: |
* dp_td dp_sugar:: |
* dp_lcm:: |
* dp_lcm:: |
Line 1354 Computation of the global b function is implemented as |
|
Line 1491 Computation of the global b function is implemented as |
|
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* lex_hensel_gsl tolex_gsl tolex_gsl_d:: |
* primadec primedec:: |
* primadec primedec:: |
* primedec_mod:: |
* primedec_mod:: |
* bfunction generic_bfct:: |
* bfunction bfct generic_bfct ann ann0:: |
@end menu |
@end menu |
|
|
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
Line 1405 Computation of the global b function is implemented as |
|
Line 1542 Computation of the global b function is implemented as |
|
strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B |
strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B |
$B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B. |
$B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B. |
@item |
@item |
@code{dgr()} $B$O(B, @code{gr()}, @code{dgr()} $B$r(B |
@code{dgr()} $B$O(B, @code{gr()}, @code{hgr()} $B$r(B |
$B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B, |
$B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B, |
$B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B |
$B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B |
$B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B. |
$B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B. |
@item |
@item |
@code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B |
@code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B |
CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. |
CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. |
|
@item |
|
$BB?9`<0%j%9%H(B @var{plist} $B$NMWAG$,J,;6I=8=B?9`<0$N>l9g$O(B |
|
$B7k2L$bJ,;6I=8=B?9`<0$N%j%9%H$G$"$k(B. |
|
$B$3$N>l9g(B, $B0z?t$NJ,;6B?9`<0$OM?$($i$l$?=g=x$K=>$$(B @code{dp_sort} $B$G(B |
|
$B%=!<%H$5$l$F$+$i7W;;$5$l$k(B. |
|
$BB?9`<0%j%9%H$NMWAG$,J,;6I=8=B?9`<0$N>l9g$b(B |
|
$BJQ?t$N?tJ,$NITDj85$N%j%9%H$r(B @var{vlist} $B0z?t$H$7$FM?$($J$$$H$$$1$J$$(B |
|
($B%@%_!<(B). |
\E |
\E |
\BEG |
\BEG |
@item |
@item |
Line 1440 Therefore this function is useful to reduce the actual |
|
Line 1585 Therefore this function is useful to reduce the actual |
|
The CPU time shown after an exection of @code{dgr()} indicates |
The CPU time shown after an exection of @code{dgr()} indicates |
that of the master process, and most of the time corresponds to the time |
that of the master process, and most of the time corresponds to the time |
for communication. |
for communication. |
|
@item |
|
When the elements of @var{plist} are distributed polynomials, |
|
the result is also a list of distributed polynomials. |
|
In this case, firstly the elements of @var{plist} is sorted by @code{dp_sort} |
|
and the Grobner basis computation is started. |
|
Variables must be given in @var{vlist} even in this case |
|
(these variables are dummy). |
\E |
\E |
@end itemize |
@end itemize |
|
|
Line 2153 except for lack of the argument for controlling homoge |
|
Line 2305 except for lack of the argument for controlling homoge |
|
\EG @fref{Controlling Groebner basis computations} |
\EG @fref{Controlling Groebner basis computations} |
@end table |
@end table |
|
|
|
\JP @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation |
|
@subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_f4_trace}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} |
|
@findex nd_gr |
|
@findex nd_gr_trace |
|
@findex nd_f4 |
|
@findex nd_f4_trace |
|
@findex nd_weyl_gr |
|
@findex nd_weyl_gr_trace |
|
|
|
@table @t |
|
@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}) |
|
@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
|
@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}) |
|
@itemx nd_f4_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
|
@item nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}) |
|
@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) |
|
\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) |
|
\EG :: Groebner basis computation (built-in functions) |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item plist vlist |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@item order |
|
\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B |
|
\EG number, list or matrix |
|
@item homo |
|
\JP $B%U%i%0(B |
|
\EG flag |
|
@item modular |
|
\JP $B%U%i%0$^$?$OAG?t(B |
|
\EG flag or prime |
|
@end table |
|
|
|
\BJP |
|
@itemize @bullet |
|
@item |
|
$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;AH$_9~$_4X?t$N?7<BAu$G$"$k(B. |
|
@item @code{nd_gr} $B$O(B, @code{p} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B Buchberger |
|
$B%"%k%4%j%:%`$r<B9T$9$k(B. @code{p} $B$,(B 2 $B0J>e$N<+A3?t$N$H$-(B, GF(p) $B>e$N(B |
|
Buchberger $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@item @code{nd_gr_trace} $B$*$h$S(B @code{nd_f4_trace} |
|
$B$OM-M}?tBN>e$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@var{p} $B$,(B 0 $B$^$?$O(B 1 $B$N$H$-(B, $B<+F0E*$KA*$P$l$?AG?t$rMQ$$$F(B, $B@.8y$9$k(B |
|
$B$^$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@var{p} $B$,(B 2 $B0J>e$N$H$-(B, trace $B$O(BGF(p) $B>e$G7W;;$5$l$k(B. trace $B%"%k%4%j%:%`(B |
|
$B$,<:GT$7$?>l9g(B 0 $B$,JV$5$l$k(B. @var{p} $B$,Ii$N>l9g(B, $B%0%l%V%J4pDl%A%'%C%/$O(B |
|
$B9T$o$J$$(B. $B$3$N>l9g(B, @var{p} $B$,(B -1 $B$J$i$P<+F0E*$KA*$P$l$?AG?t$,(B, |
|
$B$=$l0J30$O;XDj$5$l$?AG?t$rMQ$$$F%0%l%V%J4pDl8uJd$N7W;;$,9T$o$l$k(B. |
|
@code{nd_f4_trace} $B$O(B, $B3FA4<!?t$K$D$$$F(B, $B$"$kM-8BBN>e$G(B F4 $B%"%k%4%j%:%`(B |
|
$B$G9T$C$?7k2L$r$b$H$K(B, $B$=$NM-8BBN>e$G(B 0 $B$G$J$$4pDl$rM?$($k(B S-$BB?9`<0$N$_$r(B |
|
$BMQ$$$F9TNs@8@.$r9T$$(B, $B$=$NA4<!?t$K$*$1$k4pDl$r@8@.$9$kJ}K!$G$"$k(B. $BF@$i$l$k(B |
|
$BB?9`<0=89g$O$d$O$j%0%l%V%J4pDl8uJd$G$"$j(B, @code{nd_gr_trace} $B$HF1MM$N(B |
|
$B%A%'%C%/$,9T$o$l$k(B. |
|
@item |
|
@code{nd_f4} $B$O(B @code{modular} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B, @code{modular} $B$,(B |
|
$B%^%7%s%5%$%:AG?t$N$H$-M-8BBN>e$N(B F4 $B%"%k%4%j%:%`$r<B9T$9$k(B. |
|
@item |
|
@var{plist} $B$,B?9`<0%j%9%H$N>l9g(B, @var{plist}$B$G@8@.$5$l$k%$%G%"%k$N%0%l%V%J!<4pDl$,(B |
|
$B7W;;$5$l$k(B. @var{plist} $B$,B?9`<0%j%9%H$N%j%9%H$N>l9g(B, $B3FMWAG$OB?9`<04D>e$N<+M32C72$N85$H8+$J$5$l(B, |
|
$B$3$l$i$,@8@.$9$kItJ,2C72$N%0%l%V%J!<4pDl$,7W;;$5$l$k(B. $B8e<T$N>l9g(B, $B9`=g=x$O2C72$KBP$9$k9`=g=x$r(B |
|
$B;XDj$9$kI,MW$,$"$k(B. $B$3$l$O(B @var{[s,ord]} $B$N7A$G;XDj$9$k(B. @var{s} $B$,(B 0 $B$J$i$P(B TOP (Term Over Position), |
|
1 $B$J$i$P(B POT (Position Over Term) $B$r0UL#$7(B, @var{ord} $B$OB?9`<04D$NC19`<0$KBP$9$k9`=g=x$G$"$k(B. |
|
@item |
|
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} $B$O(B Weyl $BBe?tMQ$G$"$k(B. |
|
@item |
|
@code{f4} $B7O4X?t0J30$O$9$Y$FM-M}4X?t78?t$N7W;;$,2DG=$G$"$k(B. |
|
@item |
|
$B0lHL$K(B @code{dp_gr_main}, @code{dp_gr_mod_main} $B$h$j9bB.$G$"$k$,(B, |
|
$BFC$KM-8BBN>e$N>l9g82Cx$G$"$k(B. |
|
@end itemize |
|
\E |
|
|
|
\BEG |
|
@itemize @bullet |
|
@item |
|
These functions are new implementations for computing Groebner bases. |
|
@item @code{nd_gr} executes Buchberger algorithm over the rationals |
|
if @code{p} is 0, and that over GF(p) if @code{p} is a prime. |
|
@item @code{nd_gr_trace} executes the trace algorithm over the rationals. |
|
If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds |
|
by using automatically chosen primes. |
|
If @code{p} a positive prime, |
|
the trace is comuted over GF(p). |
|
If the trace algorithm fails 0 is returned. |
|
If @code{p} is negative, |
|
the Groebner basis check and ideal-membership check are omitted. |
|
In this case, an automatically chosen prime if @code{p} is 1, |
|
otherwise the specified prime is used to compute a Groebner basis |
|
candidate. |
|
Execution of @code{nd_f4_trace} is done as follows: |
|
For each total degree, an F4-reduction of S-polynomials over a finite field |
|
is done, and S-polynomials which give non-zero basis elements are gathered. |
|
Then F4-reduction over Q is done for the gathered S-polynomials. |
|
The obtained polynomial set is a Groebner basis candidate and the same |
|
check procedure as in the case of @code{nd_gr_trace} is done. |
|
@item |
|
@code{nd_f4} executes F4 algorithm over Q if @code{modular} is equal to 0, |
|
or over a finite field GF(@code{modular}) |
|
if @code{modular} is a prime number of machine size (<2^29). |
|
If @var{plist} is a list of polynomials, then a Groebner basis of the ideal generated by @var{plist} |
|
is computed. If @var{plist} is a list of lists of polynomials, then each list of polynomials are regarded |
|
as an element of a free module over a polynomial ring and a Groebner basis of the sub-module generated by @var{plist} |
|
in the free module. In the latter case a term order in the free module should be specified. |
|
This is specified by @var{[s,ord]}. If @var{s} is 0 then it means TOP (Term Over Position). |
|
If @var{s} is 1 then it means POT 1 (Position Over Term). @var{ord} is a term order in the base polynomial ring. |
|
@item |
|
@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation. |
|
@item |
|
Functions except for F4 related ones can handle rational coeffient cases. |
|
@item |
|
In general these functions are more efficient than |
|
@code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields. |
|
@end itemize |
|
\E |
|
|
|
@example |
|
[38] load("cyclic")$ |
|
[49] C=cyclic(7)$ |
|
[50] V=vars(C)$ |
|
[51] cputime(1)$ |
|
[52] dp_gr_mod_main(C,V,0,31991,0)$ |
|
26.06sec + gc : 0.313sec(26.4sec) |
|
[53] nd_gr(C,V,31991,0)$ |
|
ndv_alloc=1477188 |
|
5.737sec + gc : 0.1837sec(5.921sec) |
|
[54] dp_f4_mod_main(C,V,31991,0)$ |
|
3.51sec + gc : 0.7109sec(4.221sec) |
|
[55] nd_f4(C,V,31991,0)$ |
|
1.906sec + gc : 0.126sec(2.032sec) |
|
@end example |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{dp_ord}, |
|
@fref{dp_gr_flags dp_gr_print}, |
|
\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. |
|
\EG @fref{Controlling Groebner basis computations} |
|
@end table |
|
|
\JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |
\EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation |
@subsection @code{dp_gr_flags}, @code{dp_gr_print} |
@subsection @code{dp_gr_flags}, @code{dp_gr_print} |
Line 2329 when functions other than top level functions are call |
|
Line 2627 when functions other than top level functions are call |
|
\EG @fref{Setting term orderings} |
\EG @fref{Setting term orderings} |
@end table |
@end table |
|
|
|
\JP @node dp_set_weight dp_set_top_weight dp_weyl_set_weight,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
|
\EG @node dp_set_weight dp_set_top_weight dp_weyl_set_weight,,, Functions for Groebner basis computation |
|
@subsection @code{dp_set_weight}, @code{dp_set_top_weight}, @code{dp_weyl_set_weight} |
|
@findex dp_set_weight |
|
@findex dp_set_top_weight |
|
@findex dp_weyl_set_weight |
|
|
|
@table @t |
|
@item dp_set_weight([@var{weight}]) |
|
\JP :: sugar weight $B$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the sugar weight. |
|
@item dp_set_top_weight([@var{weight}]) |
|
\JP :: top weight $B$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the top weight. |
|
@item dp_weyl_set_weight([@var{weight}]) |
|
\JP :: weyl weight $B$N@_Dj(B, $B;2>H(B |
|
\EG :: Set and show the weyl weight. |
|
@end table |
|
|
|
@table @var |
|
@item return |
|
\JP $B%Y%/%H%k(B |
|
\EG a vector |
|
@item weight |
|
\JP $B@0?t$N%j%9%H$^$?$O%Y%/%H%k(B |
|
\EG a list or vector of integers |
|
@end table |
|
|
|
@itemize @bullet |
|
\BJP |
|
@item |
|
@code{dp_set_weight} $B$O(B sugar weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
|
$B8=:_@_Dj$5$l$F$$$k(B sugar weight $B$rJV$9(B. sugar weight $B$O@5@0?t$r@.J,$H$9$k%Y%/%H%k$G(B, |
|
$B3FJQ?t$N=E$_$rI=$9(B. $B<!?t$D$-=g=x$K$*$$$F(B, $BC19`<0$N<!?t$r7W;;$9$k:]$KMQ$$$i$l$k(B. |
|
$B@F<!2=JQ?tMQ$K(B, $BKvHx$K(B 1 $B$rIU$12C$($F$*$/$H0BA4$G$"$k(B. |
|
@item |
|
@code{dp_set_top_weight} $B$O(B top weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
|
$B8=:_@_Dj$5$l$F$$$k(B top weight $B$rJV$9(B. top weight $B$,@_Dj$5$l$F$$$k$H$-(B, |
|
$B$^$:(B top weight $B$K$h$kC19`<0Hf3S$r@h$K9T$&(B. tie breaker $B$H$7$F8=:_@_Dj$5$l$F$$$k(B |
|
$B9`=g=x$,MQ$$$i$l$k$,(B, $B$3$NHf3S$K$O(B top weight $B$OMQ$$$i$l$J$$(B. |
|
|
|
@item |
|
@code{dp_weyl_set_weight} $B$O(B weyl weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B, |
|
$B8=:_@_Dj$5$l$F$$$k(B weyl weight $B$rJV$9(B. weyl weight w $B$r@_Dj$9$k$H(B, |
|
$B9`=g=x7?(B 11 $B$G$N7W;;$K$*$$$F(B, (-w,w) $B$r(B top weight, tie breaker $B$r(B graded reverse lex |
|
$B$H$7$?9`=g=x$,@_Dj$5$l$k(B. |
|
\E |
|
\BEG |
|
@item |
|
@code{dp_set_weight} sets the sugar weight=@var{weight}. It returns the current sugar weight. |
|
A sugar weight is a vector with positive integer components and it represents the weights of variables. |
|
It is used for computing the weight of a monomial in a graded ordering. |
|
It is recommended to append a component 1 at the end of the weight vector for a homogenizing variable. |
|
@item |
|
@code{dp_set_top_weight} sets the top weight=@var{weight}. It returns the current top weight. |
|
It a top weight is set, the weights of monomials under the top weight are firstly compared. |
|
If the the weights are equal then the current term ordering is applied as a tie breaker, but |
|
the top weight is not used in the tie breaker. |
|
|
|
@item |
|
@code{dp_weyl_set_weight} sets the weyl weigh=@var{weight}. It returns the current weyl weight. |
|
If a weyl weight w is set, in the comparsion by the term order type 11, a term order with |
|
the top weight=(-w,w) and the tie breaker=graded reverse lex is applied. |
|
\E |
|
@end itemize |
|
|
|
@table @t |
|
\JP @item $B;2>H(B |
|
\EG @item References |
|
@fref{Weight} |
|
@end table |
|
|
|
|
\JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_ptod,,, Functions for Groebner basis computation |
\EG @node dp_ptod,,, Functions for Groebner basis computation |
@subsection @code{dp_ptod} |
@subsection @code{dp_ptod} |
Line 2511 converting the coefficients into elements of a finite |
|
Line 2882 converting the coefficients into elements of a finite |
|
@table @t |
@table @t |
\JP @item $B;2>H(B |
\JP @item $B;2>H(B |
\EG @item References |
\EG @item References |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}, |
@fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod}, |
@fref{subst psubst}, |
@fref{subst psubst}, |
@fref{setmod}. |
@fref{setmod}. |
@end table |
@end table |
Line 2655 polynomial contents included in the coefficients are n |
|
Line 3026 polynomial contents included in the coefficients are n |
|
@fref{ptozp}. |
@fref{ptozp}. |
@end table |
@end table |
|
|
\JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, Functions for Groebner basis computation |
\EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod,,, Functions for Groebner basis computation |
@subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod} |
@subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod} |
@findex dp_nf |
@findex dp_nf |
@findex dp_true_nf |
@findex dp_true_nf |
@findex dp_nf_mod |
@findex dp_nf_mod |
@findex dp_true_nf_mod |
@findex dp_true_nf_mod |
|
@findex dp_weyl_nf |
|
@findex dp_weyl_nf_mod |
|
|
@table @t |
@table @t |
@item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
|
@item dp_weyl_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce}) |
@item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
@item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
|
@item dp_weyl_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod}) |
\JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
\JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) |
|
|
\BEG |
\BEG |
Line 2707 is returned in such a list as @code{[numerator, denomi |
|
Line 3082 is returned in such a list as @code{[numerator, denomi |
|
@item |
@item |
$BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
$BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. |
@item |
@item |
|
$BL>A0$K(B weyl $B$r4^$`4X?t$O%o%$%kBe?t$K$*$1$k@55,7A7W;;$r9T$&(B. $B0J2<$N@bL@$O(B weyl $B$r4^$`$b$N$KBP$7$F$bF1MM$K@.N)$9$k(B. |
|
@item |
@code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$NF~NO$O(B, @code{dp_mod()} $B$J$I(B |
@code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$NF~NO$O(B, @code{dp_mod()} $B$J$I(B |
$B$K$h$j(B, $BM-8BBN>e$NJ,;6I=8=B?9`<0$K$J$C$F$$$J$1$l$P$J$i$J$$(B. |
$B$K$h$j(B, $BM-8BBN>e$NJ,;6I=8=B?9`<0$K$J$C$F$$$J$1$l$P$J$i$J$$(B. |
@item |
@item |
Line 2739 is returned in such a list as @code{[numerator, denomi |
|
Line 3116 is returned in such a list as @code{[numerator, denomi |
|
@item |
@item |
Computes the normal form of a distributed polynomial. |
Computes the normal form of a distributed polynomial. |
@item |
@item |
|
Functions whose name contain @code{weyl} compute normal forms in Weyl algebra. The description below also applies to |
|
the functions for Weyl algebra. |
|
@item |
@code{dp_nf_mod()} and @code{dp_true_nf_mod()} require |
@code{dp_nf_mod()} and @code{dp_true_nf_mod()} require |
distributed polynomials with coefficients in a finite field as arguments. |
distributed polynomials with coefficients in a finite field as arguments. |
@item |
@item |
Line 3918 execute @code{dp_gr_print(2)} in advance. |
|
Line 4298 execute @code{dp_gr_print(2)} in advance. |
|
@fref{dp_gr_flags dp_gr_print}. |
@fref{dp_gr_flags dp_gr_print}. |
@end table |
@end table |
|
|
\JP @node bfunction generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\JP @node bfunction bfct generic_bfct ann ann0,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B |
\EG @node bfunction generic_bfct,,, Functions for Groebner basis computation |
\EG @node bfunction bfct generic_bfct ann ann0,,, Functions for Groebner basis computation |
@subsection @code{bfunction}, @code{generic_bfct} |
@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct}, @code{ann}, @code{ann0} |
@findex bfunction |
@findex bfunction |
|
@findex bfct |
@findex generic_bfct |
@findex generic_bfct |
|
@findex ann |
|
@findex ann0 |
|
|
@table @t |
@table @t |
@item bfunction(@var{f}) |
@item bfunction(@var{f}) |
@item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
@itemx bfct(@var{f}) |
\JP :: b $B4X?t$N7W;;(B |
@itemx generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) |
\EG :: Computes the global b function of a polynomial or an ideal |
\JP :: @var{b} $B4X?t$N7W;;(B |
|
\EG :: Computes the global @var{b} function of a polynomial or an ideal |
|
@item ann(@var{f}) |
|
@itemx ann0(@var{f}) |
|
\JP :: $BB?9`<0$N%Y%-$N(B annihilator $B$N7W;;(B |
|
\EG :: Computes the annihilator of a power of polynomial |
@end table |
@end table |
|
|
@table @var |
@table @var |
@item return |
@item return |
@itemx f |
\JP $BB?9`<0$^$?$O%j%9%H(B |
|
\EG polynomial or list |
|
@item f |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item plist |
@item plist |
Line 3946 execute @code{dp_gr_print(2)} in advance. |
|
Line 4337 execute @code{dp_gr_print(2)} in advance. |
|
@itemize @bullet |
@itemize @bullet |
\BJP |
\BJP |
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. |
@item @code{bfunction(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B |
@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global @var{b} $B4X?t(B @code{b(s)} $B$r(B |
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} |
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B |
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B. |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
$B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B, |
$B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B, |
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global b $B4X?t$r7W;;$9$k(B. |
$B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global @var{b} $B4X?t$r7W;;$9$k(B. |
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
@var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B |
$B$r=g$KJB$Y$k(B. |
$B$r=g$KJB$Y$k(B. |
|
@item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B |
|
$B0[$J$k(B. $B$I$A$i$,9bB.$+$OF~NO$K$h$k(B. |
|
@item @code{ann(@var{f})} $B$O(B, @code{@var{f}^s} $B$N(B annihilator ideal |
|
$B$N@8@.7O$rJV$9(B. @code{ann(@var{f})} $B$O(B, @code{[@var{a},@var{list}]} |
|
$B$J$k%j%9%H$rJV$9(B. $B$3$3$G(B, @var{a} $B$O(B @var{f} $B$N(B @var{b} $B4X?t$N:G>.@0?t:,(B, |
|
@var{list} $B$O(B @code{ann(@var{f})} $B$N7k2L$N(B @code{s}$ $B$K(B, @var{a} $B$r(B |
|
$BBeF~$7$?$b$N$G$"$k(B. |
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. |
\E |
\E |
\BEG |
\BEG |
@item These functions are defined in @samp{bfct}. |
@item These functions are defined in @samp{bfct}. |
@item @code{bfunction(@var{f})} computes the global b-function @code{b(s)} of |
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global @var{b}-function @code{b(s)} of |
a polynomial @var{f}. |
a polynomial @var{f}. |
@code{b(s)} is a polynomial of the minimal degree |
@code{b(s)} is a polynomial of the minimal degree |
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
such that there exists @code{P(x,s)} in D[s], which is a polynomial |
ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. |
ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} |
computes the global b-function of a left ideal @code{I} in @code{D} |
computes the global @var{b}-function of a left ideal @code{I} in @code{D} |
generated by @var{plist}, with respect to @var{weight}. |
generated by @var{plist}, with respect to @var{weight}. |
@var{vlist} is the list of @code{x}-variables, |
@var{vlist} is the list of @code{x}-variables, |
@var{vlist} is the list of corresponding @code{D}-variables. |
@var{vlist} is the list of corresponding @code{D}-variables. |
|
@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement |
|
different algorithms and the efficiency depends on inputs. |
|
@item @code{ann(@var{f})} returns the generator set of the annihilator |
|
ideal of @code{@var{f}^s}. |
|
@code{ann(@var{f})} returns a list @code{[@var{a},@var{list}]}, |
|
where @var{a} is the minimal integral root of the global @var{b}-function |
|
of @var{f}, and @var{list} is a list of polynomials obtained by |
|
substituting @code{s} in @code{ann(@var{f})} with @var{a}. |
@item See [Saito,Sturmfels,Takayama] for the details. |
@item See [Saito,Sturmfels,Takayama] for the details. |
\E |
\E |
@end itemize |
@end itemize |
Line 3984 x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ |
|
Line 4390 x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ |
|
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); |
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); |
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 |
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 |
+1278*s^4-72*s^3 |
+1278*s^4-72*s^3 |
|
[220] P=x^3-y^2$ |
|
[221] ann(P); |
|
[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s] |
|
[222] ann0(P); |
|
[-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]] |
@end example |
@end example |
|
|
@table @t |
@table @t |