[BACK]Return to groebner.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts

Diff for /OpenXM/src/asir-doc/parts/groebner.texi between version 1.4 and 1.6

version 1.4, 2003/04/19 15:44:56 version 1.6, 2003/04/20 09:55:18
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.3 1999/12/24 04:38:04 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.5 2003/04/20 08:01:25 noro Exp $
 \BJP  \BJP
 @node $B%0%l%V%J4pDl$N7W;;(B,,, Top  @node $B%0%l%V%J4pDl$N7W;;(B,,, Top
 @chapter $B%0%l%V%J4pDl$N7W;;(B  @chapter $B%0%l%V%J4pDl$N7W;;(B
Line 17 
Line 17 
 * $B9`=g=x$N@_Dj(B::  * $B9`=g=x$N@_Dj(B::
 * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B::  * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B::
 * $B4pDlJQ49(B::  * $B4pDlJQ49(B::
   * Weyl $BBe?t(B::
 * $B%0%l%V%J4pDl$K4X$9$kH!?t(B::  * $B%0%l%V%J4pDl$K4X$9$kH!?t(B::
 \E  \E
 \BEG  \BEG
Line 27 
Line 28 
 * Setting term orderings::  * Setting term orderings::
 * Groebner basis computation with rational function coefficients::  * Groebner basis computation with rational function coefficients::
 * Change of ordering::  * Change of ordering::
   * Weyl algebra::
 * Functions for Groebner basis computation::  * Functions for Groebner basis computation::
 \E  \E
 @end menu  @end menu
Line 228  the head term and the head coefficient respectively.
Line 230  the head term and the head coefficient respectively.
 @noindent  @noindent
 \BJP  \BJP
 $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B  $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B
 @code{dp_gr_mod_main()} $B$J$k(B 2 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B  @code{dp_gr_mod_main()}, @code{dp_gr_f_main()}
    $B$J$k(B 3 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B
 $B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B.  $B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B.
 $B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B  $B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B
 $B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B  $B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B
 $B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. $B$h$C$F(B, $B4D6-JQ?t(B @code{ASIR_LIBDIR}  $B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B.
 $B$rFC$K0[$J$k%Q%9$K@_Dj$7$J$$8B$j(B, $B%U%!%$%kL>$N$_$GFI$_9~$`$3$H$,$G$-$k(B.  
 \E  \E
 \BEG  \BEG
 Facilities for computing Groebner bases are provided not by built-in  Facilities for computing Groebner bases are
 functions but by a set of user functions written in @b{Asir}.  @code{dp_gr_main()}, @code{dp_gr_mod_main()}and @code{dp_gr_f_main()}.
 The set of functions is provided as a file (sometimes called package),  To call these functions,
 named @samp{gr}.  it is necessary to set several parameters correctly and it is convenient
   to use a set of interface functions provided in the library file
   @samp{gr}.
 The facilities will be ready to use after you load the package by  The facilities will be ready to use after you load the package by
 @code{load()}.  The package @samp{gr} is placed in the standard library  @code{load()}.  The package @samp{gr} is placed in the standard library
 directory of @b{Asir}.  Therefore, it is loaded simply by specifying  directory of @b{Asir}.
 its file name, unless the environment variable @code{ASIR_LIBDIR}  
 is set to a non-standard one.  
 \E  \E
   
 @example  @example
Line 350  These parameters can be set and examined by a built-in
Line 352  These parameters can be set and examined by a built-in
   
 @example  @example
 [100] dp_gr_flags();  [100] dp_gr_flags();
 [Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,ShowMag,1,  [Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,
 Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]  ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
 [101]  [101]
 @end example  @end example
   
Line 530  membercheck
Line 532  membercheck
 (0,0)(0,0)(0,0)(0,0)  (0,0)(0,0)(0,0)(0,0)
 gbcheck total 8 pairs  gbcheck total 8 pairs
 ........  ........
 UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)PZ=(0,0)  UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)
 NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 D=12 ZR=5 NZR=6  PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6
 Max_mag=6  D=12 ZR=5 NZR=6 Max_mag=6
 [94]  [94]
 @end example  @end example
   
Line 992  time as well as the choice of types of term orderings.
Line 994  time as well as the choice of types of term orderings.
 -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y  -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y
 +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5  +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5
 -167*t^4-55*t^3+30*t^2+58*t-15)*z^4,  -167*t^4-55*t^3+30*t^2+58*t-15)*z^4,
 (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11+84*t^9  (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11
 +20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y+(6*t^16-36*t^13  +84*t^9+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y
 +14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4+27*t^3-16*t^2-30*t+7)*z^4,  +(6*t^16-36*t^13+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4
 (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2-6*t-1)*y  +27*t^3-16*t^2-30*t+7)*z^4,
 +(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5+10*t^4-36*t^3  (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2
 -11*t^2-5*t+9)*z^2,  -6*t-1)*y+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5
   +10*t^4-36*t^3-11*t^2-5*t+9)*z^2,
 -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7  -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7
 -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21+20*t^19  -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21
 +28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11-400*t^10-84*t^9  +20*t^19+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11
 +84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2-12*t+1)*z,  -400*t^10-84*t^9+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2
 2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2-10*t-20)*z^3*y+8*t^14  -12*t+1)*z,2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2
 -32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,  -10*t-20)*z^3*y+8*t^14-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,
 -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,  -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,
 2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,  2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y
   +(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,
 z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,  z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,
 -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,  -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,
 -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,  -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,z^5-t^4]
 z^5-t^4]  
 [93] gr(B,[t,z,y,x],2);  [93] gr(B,[t,z,y,x],2);
 [x^10-t,x^8-z,x^31-x^6-x-y]  [x^10-t,x^8-z,x^31-x^6-x-y]
 @end example  @end example
Line 1200  Refer to the sections for each functions.
Line 1203  Refer to the sections for each functions.
 \E  \E
   
 \BJP  \BJP
   @node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
   @section Weyl $BBe?t(B
   \E
   \BEG
   @node Weyl algebra,,, Groebner basis computation
   @section Weyl algebra
   \E
   
   @noindent
   
   \BJP
   $B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B
   $B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B
   $B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B,
   Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B
   $B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$K<BAu$5$l$F$$$k(B.
   
   $BBN(B @code{K} $B>e$N(B @code{n} $B<!85(B Weyl $BBe?t(B
   @code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} $B$O(B
   \E
   
   \BEG
   So far we have explained Groebner basis computation in
   commutative polynomial rings. However Groebner basis can be
   considered in more general non-commutative rings.
   Weyl algebra is one of such rings and
   Risa/Asir implements fundamental operations
   in Weyl algebra and Groebner basis computation in Weyl algebra.
   
   The @code{n} dimensional Weyl algebra over a field @code{K},
   @code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} is a non-commutative
   algebra which has the following fundamental relations:
   \E
   
   @code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}),
   @code{Di*xi-xi*Di=1}
   
   \BJP
   $B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B
   $B$H$9$kHyJ,:nMQAG4D$G(B,  @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B,
   @code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B
   $B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B.
   Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B
   @code{<<i1,@dots{},in,j1,@dots{},jn>>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B
   $BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-}
   $B$K$h$j(B
   $B<B9T$G$-$k$,(B, $B>h;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B
   $B$K$h$j<B9T$9$k(B.
   \E
   
   \BEG
   @code{D} is the ring of differential operators whose coefficients
   are polynomials in @code{K[x1,@dots{},xn]} and
   @code{Di} denotes the differentiation with respect to  @code{xi}.
   According to the commutation relation,
   elements of @code{D} can be represented as a @code{K}-linear combination
   of monomials @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn}.
   In Risa/Asir, this type of monomial is represented
   by @code{<<i1,@dots{},in,j1,@dots{},jn>>} as in the case of commutative
   polynomial.
   That is, elements of @code{D} are represented by distributed polynomials.
   Addition and subtraction can be done by @code{+}, @code{-},
   but multiplication is done by calling @code{dp_weyl_mul()} because of
   the non-commutativity of @code{D}.
   \E
   
   @example
   [0] A=<<1,2,2,1>>;
   (1)*<<1,2,2,1>>
   [1] B=<<2,1,1,2>>;
   (1)*<<2,1,1,2>>
   [2] A*B;
   (1)*<<3,3,3,3>>
   [3] dp_weyl_mul(A,B);
   (1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>>
   +(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>>
   @end example
   
   \BJP
   $B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B,
   $B<!$N4X?t$,MQ0U$7$F$"$k(B.
   \E
   \BEG
   The following functions are avilable for Groebner basis computation
   in Weyl algebra:
   \E
   @code{dp_weyl_gr_main()},
   @code{dp_weyl_gr_mod_main()},
   @code{dp_weyl_gr_f_main()},
   @code{dp_weyl_f4_main()},
   @code{dp_weyl_f4_mod_main()}.
   \BJP
   $B$^$?(B, $B1~MQ$H$7$F(B, global b $B4X?t$N7W;;$,<BAu$5$l$F$$$k(B.
   \E
   \BEG
   Computation of the global b function is implemented as an application.
   \E
   
   \BJP
 @node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B  @node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
 @section $B%0%l%V%J4pDl$K4X$9$kH!?t(B  @section $B%0%l%V%J4pDl$K4X$9$kH!?t(B
 \E  \E
Line 1214  Refer to the sections for each functions.
Line 1316  Refer to the sections for each functions.
 * lex_hensel_gsl tolex_gsl tolex_gsl_d::  * lex_hensel_gsl tolex_gsl tolex_gsl_d::
 * gr_minipoly minipoly::  * gr_minipoly minipoly::
 * tolexm minipolym::  * tolexm minipolym::
 * dp_gr_main dp_gr_mod_main::  * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main::
 * dp_f4_main dp_f4_mod_main::  * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main::
 * dp_gr_flags dp_gr_print::  * dp_gr_flags dp_gr_print::
 * dp_ord::  * dp_ord::
 * dp_ptod::  * dp_ptod::
Line 1240  Refer to the sections for each functions.
Line 1342  Refer to the sections for each functions.
 * dp_vtoe dp_etov::  * dp_vtoe dp_etov::
 * lex_hensel_gsl tolex_gsl tolex_gsl_d::  * lex_hensel_gsl tolex_gsl tolex_gsl_d::
 * primadec primedec::  * primadec primedec::
   * primedec_mod::
   * bfunction generic_bfct::
 @end menu  @end menu
   
 \JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
Line 1342  for communication.
Line 1446  for communication.
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @comment @fref{dp_gr_main dp_gr_mod_main},  @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main},
 @fref{dp_gr_main dp_gr_mod_main},  
 @fref{dp_ord}.  @fref{dp_ord}.
 @end table  @end table
   
Line 1560  processes.
Line 1663  processes.
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{dp_gr_main dp_gr_mod_main},  @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main},
 \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B}  \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B}
 \EG @fref{dp_ord}, @fref{Distributed computation}  \EG @fref{dp_ord}, @fref{Distributed computation}
 @end table  @end table
Line 1662  processes.
Line 1765  processes.
 [108] GSL[1];  [108] GSL[1];
 [u2,10352277157007342793600000000*u0^31-...]  [u2,10352277157007342793600000000*u0^31-...]
 [109] GSL[5];  [109] GSL[5];
 [u0,11771021876193064124640000000*u0^32-...,376672700038178051988480000000*u0^31-...]  [u0,11771021876193064124640000000*u0^32-...,
   376672700038178051988480000000*u0^31-...]
 @end example  @end example
   
 @table @t  @table @t
Line 1837  z^32+11405*z^31+20868*z^30+21602*z^29+...
Line 1941  z^32+11405*z^31+20868*z^30+21602*z^29+...
 @fref{gr_minipoly minipoly}.  @fref{gr_minipoly minipoly}.
 @end table  @end table
   
 \JP @node dp_gr_main dp_gr_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
 \EG @node dp_gr_main dp_gr_mod_main,,, Functions for Groebner basis computation  \EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, Functions for Groebner basis computation
 @subsection @code{dp_gr_main}, @code{dp_gr_mod_main}  @subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}, @code{dp_weyl_gr_main}, @code{dp_weyl_gr_mod_main}, @code{dp_weyl_gr_f_main}
 @findex dp_gr_main  @findex dp_gr_main
 @findex dp_gr_mod_main  @findex dp_gr_mod_main
   @findex dp_gr_f_main
   @findex dp_weyl_gr_main
   @findex dp_weyl_gr_mod_main
   @findex dp_weyl_gr_f_main
   
 @table @t  @table @t
 @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})  @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
 @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})  @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
   @itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order})
   @itemx dp_weyl_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
   @itemx dp_weyl_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
   @itemx dp_weyl_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order})
 \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)  \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
 \EG :: Groebner basis computation (built-in functions)  \EG :: Groebner basis computation (built-in functions)
 @end table  @end table
Line 1873  z^32+11405*z^31+20868*z^30+21602*z^29+...
Line 1985  z^32+11405*z^31+20868*z^30+21602*z^29+...
 @item  @item
 $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()},  $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()},
 @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B  @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B
 $B$r9T$C$F$$$k(B.  $B$r9T$C$F$$$k(B. $B4X?tL>$K(B weyl $B$,F~$C$F$$$k$b$N$O(B, Weyl $BBe?t>e$N7W;;(B
   $B$N$?$a$N4X?t$G$"$k(B.
 @item  @item
   @code{dp_gr_f_main()}, @code{dp_weyl_f_main()} $B$O(B, $B<o!9$NM-8BBN>e$N%0%l%V%J4pDl$r7W;;$9$k(B
   $B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B,
   $B9M$($kM-8BBN>e$K<M1F$5$l$F$$$kI,MW$,$"$k(B.
   @item
 $B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B  $B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B
 $B$r<B9T$9$k(B.  $B$r<B9T$9$k(B.
 @item  @item
Line 1906  z^32+11405*z^31+20868*z^30+21602*z^29+...
Line 2023  z^32+11405*z^31+20868*z^30+21602*z^29+...
 @item  @item
 These functions are fundamental built-in functions for Groebner basis  These functions are fundamental built-in functions for Groebner basis
 computation and @code{gr()},@code{hgr()} and @code{gr_mod()}  computation and @code{gr()},@code{hgr()} and @code{gr_mod()}
 are all interfaces to these functions.  are all interfaces to these functions. Functions whose names
   contain weyl are those for computation in Weyl algebra.
 @item  @item
   @code{dp_gr_f_main()} and @code{dp_weyl_gr_f_main()}
   are functions for Groebner basis computation
   over various finite fields. Coefficients of input polynomials
   must be converted to elements of a finite field
   currently specified by @code{setmod_ff()}.
   @item
 If @var{homo} is not equal to 0, homogenization is applied before entering  If @var{homo} is not equal to 0, homogenization is applied before entering
 Buchberger algorithm  Buchberger algorithm
 @item  @item
Line 1945  Actual computation is controlled by various parameters
Line 2069  Actual computation is controlled by various parameters
 @fref{dp_ord},  @fref{dp_ord},
 @fref{dp_gr_flags dp_gr_print},  @fref{dp_gr_flags dp_gr_print},
 @fref{gr hgr gr_mod},  @fref{gr hgr gr_mod},
   @fref{setmod_ff},
 \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.  \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
 \EG @fref{Controlling Groebner basis computations}  \EG @fref{Controlling Groebner basis computations}
 @end table  @end table
   
 \JP @node dp_f4_main dp_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
 \EG @node dp_f4_main dp_f4_mod_main,,, Functions for Groebner basis computation  \EG @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, Functions for Groebner basis computation
 @subsection @code{dp_f4_main}, @code{dp_f4_mod_main}  @subsection @code{dp_f4_main}, @code{dp_f4_mod_main}, @code{dp_weyl_f4_main}, @code{dp_weyl_f4_mod_main}
 @findex dp_f4_main  @findex dp_f4_main
 @findex dp_f4_mod_main  @findex dp_f4_mod_main
   @findex dp_weyl_f4_main
   @findex dp_weyl_f4_mod_main
   
 @table @t  @table @t
 @item dp_f4_main(@var{plist},@var{vlist},@var{order})  @item dp_f4_main(@var{plist},@var{vlist},@var{order})
 @itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order})  @itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order})
   @itemx dp_weyl_f4_main(@var{plist},@var{vlist},@var{order})
   @itemx dp_weyl_f4_mod_main(@var{plist},@var{vlist},@var{order})
 \JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)  \JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
 \EG :: Groebner basis computation by F4 algorithm (built-in functions)  \EG :: Groebner basis computation by F4 algorithm (built-in functions)
 @end table  @end table
Line 1983  F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$
Line 2112  F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$
 $B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B  $B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B
 $B;n83E*$J<BAu$G$"$k(B.  $B;n83E*$J<BAu$G$"$k(B.
 @item  @item
 $B0z?t$*$h$SF0:n$O$=$l$>$l(B @code{dp_gr_main()}, @code{dp_gr_mod_main()}  $B@F<!2=$N0z?t$,$J$$$3$H$r=|$1$P(B, $B0z?t$*$h$SF0:n$O$=$l$>$l(B
   @code{dp_gr_main()}, @code{dp_gr_mod_main()},
   @code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()}
 $B$HF1MM$G$"$k(B.  $B$HF1MM$G$"$k(B.
 \E  \E
 \BEG  \BEG
Line 1995  invented by J.C. Faugere. The current implementation o
Line 2126  invented by J.C. Faugere. The current implementation o
 uses Chinese Remainder theorem and not highly optimized.  uses Chinese Remainder theorem and not highly optimized.
 @item  @item
 Arguments and actions are the same as those of  Arguments and actions are the same as those of
 @code{dp_gr_main()}, @code{dp_gr_mod_main()}.  @code{dp_gr_main()}, @code{dp_gr_mod_main()},
   @code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()},
   except for lack of the argument for controlling homogenization.
 \E  \E
 @end itemize  @end itemize
   
Line 2036  and showing informations.
Line 2169  and showing informations.
 @itemize @bullet  @itemize @bullet
 \BJP  \BJP
 @item  @item
 @code{dp_gr_main()}, @code{dp_gr_mod_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B  @code{dp_gr_main()}, @code{dp_gr_mod_main()}, @code{dp_gr_f_main()}  $B<B9T;~$K$*$1$k$5$^$6$^(B
 $B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B.  $B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B.
 @item  @item
 $B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B.  $B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B.
Line 2212  the coefficient field.
Line 2345  the coefficient field.
 (1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>  (1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>
 +(1)*<<0,0,2>>  +(1)*<<0,0,2>>
 [52] dp_ptod((x+y+z)^2,[x,y]);  [52] dp_ptod((x+y+z)^2,[x,y]);
 (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>>  (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
   +(z^2)*<<0,0>>
 @end example  @end example
   
 @table @t  @table @t
Line 2264  variables of @var{dpoly}.
Line 2398  variables of @var{dpoly}.
   
 @example  @example
 [53] T=dp_ptod((x+y+z)^2,[x,y]);  [53] T=dp_ptod((x+y+z)^2,[x,y]);
 (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>>  (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
   +(z^2)*<<0,0>>
 [54] P=dp_dtop(T,[a,b]);  [54] P=dp_dtop(T,[a,b]);
 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2  z^2+(2*a+2*b)*z+a^2+2*b*a+b^2
 @end example  @end example
Line 2617  For single computation @code{p_nf} and @code{p_true_nf
Line 2752  For single computation @code{p_nf} and @code{p_true_nf
 [74] DP2=newvect(length(G),map(dp_ptod,G,V))$  [74] DP2=newvect(length(G),map(dp_ptod,G,V))$
 [75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$  [75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$
 [76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);  [76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);
 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2+(6*u1-2)*u2+9*u1^2-6*u1+1  u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2
   +(6*u1-2)*u2+9*u1^2-6*u1+1
 [77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);  [77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);
 -5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1  -5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1
 [78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);  [78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);
 -1138087976845165778088612297273078520347097001020471455633353049221045677593  -11380879768451657780886122972730785203470970010204714556333530492210
 0005716505560062087150928400876150217079820311439477560587583488*u4^15+...  456775930005716505560062087150928400876150217079820311439477560587583
   488*u4^15+...
 [79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);  [79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
 -1138087976845165778088612297273078520347097001020471455633353049221045677593  -11380879768451657780886122972730785203470970010204714556333530492210
 0005716505560062087150928400876150217079820311439477560587583488*u4^15+...  456775930005716505560062087150928400876150217079820311439477560587583
   488*u4^15+...
 [80] @@78==@@79;  [80] @@78==@@79;
 1  1
 @end example  @end example
Line 3170  The result is a list @code{[@var{a dpoly1},@var{a dpol
Line 3308  The result is a list @code{[@var{a dpoly1},@var{a dpol
 [159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;  [159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
 (12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>  (12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
 [160] dp_red(D,R,C);  [160] dp_red(D,R,C);
 [(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,(-1)*<<0,1,1,1,0>>  [(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,
 +(-1)*<<1,1,0,0,1>>]  (-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>]
 @end example  @end example
   
 @table @t  @table @t
Line 3409  exists.
Line 3547  exists.
 @example  @example
 [233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$  [233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$
 [234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);  [234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);
 [u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,u0^21,u0^20,  [u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,
 u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,u0^10,u0^9,u0^8,u0^7,  u0^21,u0^20,u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,
 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]  u0^10,u0^9,u0^8,u0^7,u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]
 @end example  @end example
   
 \JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
Line 3519  Polynomial set @code{cyclic} is sometimes called by ot
Line 3657  Polynomial set @code{cyclic} is sometimes called by ot
 [79] load("cyclic")$  [79] load("cyclic")$
 [89] katsura(5);  [89] katsura(5);
 [u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,  [u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
 2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2,  2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3
 2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,  -u2+u1^2,2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]  u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
 [90] hkatsura(5);  [90] hkatsura(5);
 [-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,  [-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
Line 3642  if an input ideal is not radical.
Line 3780  if an input ideal is not radical.
 \JP @fref{$B9`=g=x$N@_Dj(B}.  \JP @fref{$B9`=g=x$N@_Dj(B}.
 \EG @fref{Setting term orderings}.  \EG @fref{Setting term orderings}.
 @end table  @end table
   
   \JP @node primedec_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
   \EG @node primedec_mod,,, Functions for Groebner basis computation
   @subsection @code{primedec_mod}
   @findex primedec_mod
   
   @table @t
   @item primedec_mod(@var{plist},@var{vlist},@var{ord},@var{mod},@var{strategy})
   \JP :: $B%$%G%"%k$NJ,2r(B
   \EG :: Computes decompositions of ideals over small finite fields.
   @end table
   
   @table @var
   @item return
   @itemx plist
   \JP $BB?9`<0%j%9%H(B
   \EG list of polynomials
   @item vlist
   \JP $BJQ?t%j%9%H(B
   \EG list of variables
   @item ord
   \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
   \EG number, list or matrix
   @item mod
   \JP $B@5@0?t(B
   \EG positive integer
   @item strategy
   \JP $B@0?t(B
   \EG integer
   @end table
   
   @itemize @bullet
   \BJP
   @item
   @code{primedec_mod()} $B$O(B @samp{primdec_mod}
   $B$GDj5A$5$l$F$$$k(B. @code{[Yokoyama]} $B$NAG%$%G%"%kJ,2r%"%k%4%j%:%`(B
   $B$r<BAu$7$F$$$k(B.
   @item
   @code{primedec_mod()} $B$OM-8BBN>e$G$N%$%G%"%k$N(B
   $B:,4p$NAG%$%G%"%kJ,2r$r9T$$(B, $BAG%$%G%"%k$N%j%9%H$rJV$9(B.
   @item
   @code{primedec_mod()} $B$O(B, GF(@var{mod}) $B>e$G$NJ,2r$rM?$($k(B.
   $B7k2L$N3F@.J,$N@8@.85$O(B, $B@0?t78?tB?9`<0$G$"$k(B.
   @item
   $B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B
   [@var{vlist},@var{ord}] $B$G;XDj$5$l$k9`=g=x$K4X$9$k%0%l%V%J4pDl$G$"$k(B.
   @item
   @var{strategy} $B$,(B 0 $B$G$J$$$H$-(B, incremental $B$K(B component $B$N6&DL(B
   $BItJ,$r7W;;$9$k$3$H$K$h$k(B early termination $B$r9T$&(B. $B0lHL$K(B,
   $B%$%G%"%k$N<!85$,9b$$>l9g$KM-8z$@$,(B, 0 $B<!85$N>l9g$J$I(B, $B<!85$,>.$5$$(B
   $B>l9g$K$O(B overhead $B$,Bg$-$$>l9g$,$"$k(B.
   \E
   \BEG
   @item
   Function @code{primedec_mod()}
   is defined in @samp{primdec_mod} and implements the prime decomposition
   algorithm in @code{[Yokoyama]}.
   @item
   @code{primedec_mod()}
   is the function for prime ideal decomposition
   of the radical of a polynomial ideal over small finite field,
   and they return a list of prime ideals, which are associated primes
   of the input ideal.
   @item
   @code{primedec_mod()} gives the decomposition over GF(@var{mod}).
   The generators of each resulting component consists of integral polynomials.
   @item
   Each resulting component is a Groebner basis with respect to
   a term order specified by [@var{vlist},@var{ord}].
   @item
   If @var{strategy} is non zero, then the early termination strategy
   is tried by computing the intersection of obtained components
   incrementally. In general, this strategy is useful when the krull
   dimension of the ideal is high, but it may add some overhead
   if the dimension is small.
   \E
   @end itemize
   
   @example
   [0] load("primdec_mod")$
   [246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$
   [247] primedec_mod(PP444,[x,y,z,t],0,2,1);
   [[y+z,x+z,z^8+z^2+t],[x+y,y^2+y+z^2+z+1,z^8+z^2+t],
   [y+z+1,x+z+1,z^8+z^2+t],[x+z,y^2+y+z^2+z+1,z^8+z^2+t],
   [y+z,x^2+x+z^2+z+1,z^8+z^2+t],[y+z+1,x^2+x+z^2+z+1,z^8+z^2+t],
   [x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z+1,x+z,z^8+z^2+t],
   [x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]]
   [248]
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   @fref{modfctr},
   @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main},
   \JP @fref{$B9`=g=x$N@_Dj(B}.
   \EG @fref{Setting term orderings}.
   @end table
   
   \JP @node bfunction generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
   \EG @node bfunction generic_bfct,,, Functions for Groebner basis computation
   @subsection @code{bfunction}, @code{generic_bfct}
   @findex bfunction
   @findex generic_bfct
   
   @table @t
   @item bfunction(@var{f})
   @item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight})
   \JP :: b $B4X?t$N7W;;(B
   \EG :: Computes the global b function of a polynomial or an ideal
   @end table
   @table @var
   @item return
   @itemx f
   \JP $BB?9`<0(B
   \EG polynomial
   @item plist
   \JP $BB?9`<0%j%9%H(B
   \EG list of polynomials
   @item vlist dvlist
   \JP $BJQ?t%j%9%H(B
   \EG list of variables
   @end table
   
   @itemize @bullet
   \BJP
   @item @samp{bfct} $B$GDj5A$5$l$F$$$k(B.
   @item @code{bfunction(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B
   $B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]}
   $B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B
   $BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B.
   @item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})}
   $B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B,
   $B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global b $B4X?t$r7W;;$9$k(B.
   @var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B
   $B$r=g$KJB$Y$k(B.
   @item $B>\:Y$K$D$$$F$O(B, [SST] $B$r8+$h(B.
   \E
   \BEG
   @item These functions are defined in @samp{bfct}.
   @item @code{bfunction(@var{f})} computes the global b-function @code{b(s)} of
   a polynomial @var{f}.
   @code{b(s)} is a polynomial of the minimal degree
   such that there exists @code{P(x,s)} in D[s], which is a polynomial
   ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds.
   @item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})}
   computes the global b-function of a left ideal @code{I} in @code{D}
   generated by @var{plist}, with respect to @var{weight}.
   @var{vlist} is the list of @code{x}-variables,
   @var{vlist} is the list of corresponding @code{D}-variables.
   @item See [SST] for the details.
   \E
   @end itemize
   
   @example
   [0] load("bfct")$
   [216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z);
   -9*s^5-63*s^4-173*s^3-233*s^2-154*s-40
   [217] fctr(@@);
   [[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]]
   [218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy,
   x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$
   [219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]);
   20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5
   +1278*s^4-72*s^3
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   \JP @fref{Weyl $BBe?t(B}.
   \EG @fref{Weyl algebra}.
   @end table
   

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.6

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>