version 1.3, 1999/12/24 04:38:04 |
version 1.4, 2003/04/19 15:44:56 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.2 1999/12/21 02:47:31 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.3 1999/12/24 04:38:04 noro Exp $ |
\BJP |
\BJP |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@node $B%0%l%V%J4pDl$N7W;;(B,,, Top |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
@chapter $B%0%l%V%J4pDl$N7W;;(B |
Line 1263 Refer to the sections for each functions. |
|
Line 1263 Refer to the sections for each functions. |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist, procs |
@item plist vlist procs |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1372 for communication. |
|
Line 1372 for communication. |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist1, vlist2, procs |
@item plist vlist1 vlist2 procs |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
|
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist1, vlist2, procs |
@item plist vlist1 vlist2 procs |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
|
|
@item return |
@item return |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item plist, vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1789 for @code{gr_minipoly()}. |
|
Line 1789 for @code{gr_minipoly()}. |
|
@item return |
@item return |
\JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B |
\JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
\EG @code{tolexm()} : list, @code{minipolym()} : polynomial |
@item plist, vlist1, vlist2 |
@item plist vlist1 vlist2 |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1854 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
Line 1854 z^32+11405*z^31+20868*z^30+21602*z^29+... |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 1966 Actual computation is controlled by various parameters |
|
Line 1966 Actual computation is controlled by various parameters |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item plist, vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 2791 selection strategy of critical pairs in Groebner basis |
|
Line 2791 selection strategy of critical pairs in Groebner basis |
|
@item return |
@item return |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 2834 two polynomials, where coefficient is always set to 1. |
|
Line 2834 two polynomials, where coefficient is always set to 1. |
|
@item return |
@item return |
\JP $B@0?t(B |
\JP $B@0?t(B |
\EG integer |
\EG integer |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 2889 Used for finding candidate terms at reduction of polyn |
|
Line 2889 Used for finding candidate terms at reduction of polyn |
|
@item return |
@item return |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@end table |
@end table |
Line 3113 values of @code{dp_mag()} for intermediate basis eleme |
|
Line 3113 values of @code{dp_mag()} for intermediate basis eleme |
|
@item return |
@item return |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item dpoly1, dpoly2, dpoly3 |
@item dpoly1 dpoly2 dpoly3 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item vlist |
@item vlist |
Line 3137 values of @code{dp_mag()} for intermediate basis eleme |
|
Line 3137 values of @code{dp_mag()} for intermediate basis eleme |
|
$B$J$i$J$$(B. |
$B$J$i$J$$(B. |
@item |
@item |
$B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b}, |
$B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b}, |
$B9`(B @var{t} $B$K$h$j(B @var{a(dpoly1 + dpoly2)-bt dpoly3} $B$H$7$F7W;;$5$l$k(B. |
$B9`(B @var{t} $B$K$h$j(B @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3} $B$H$7$F7W;;$5$l$k(B. |
@item |
@item |
$B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B. |
$B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B. |
\E |
\E |
Line 3156 the divisibility of the head term of @var{dpoly2} by t |
|
Line 3156 the divisibility of the head term of @var{dpoly2} by t |
|
When integral coefficients, computation is so carefully performed that |
When integral coefficients, computation is so carefully performed that |
no rational operations appear in the reduction procedure. |
no rational operations appear in the reduction procedure. |
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
It is computed for integers @var{a} and @var{b}, and a term @var{t} as: |
@var{a(dpoly1 + dpoly2)-bt dpoly3}. |
@var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3}. |
@item |
@item |
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}. |
\E |
\E |
Line 3197 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
Line 3197 The result is a list @code{[@var{a dpoly1},@var{a dpol |
|
@item return |
@item return |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item dpoly1, dpoly2 |
@item dpoly1 dpoly2 |
\JP $BJ,;6I=8=B?9`<0(B |
\JP $BJ,;6I=8=B?9`<0(B |
\EG distributed polynomial |
\EG distributed polynomial |
@item mod |
@item mod |
Line 3273 as a form of @code{[numerator, denominator]}) |
|
Line 3273 as a form of @code{[numerator, denominator]}) |
|
@item poly |
@item poly |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item plist,vlist |
@item plist vlist |
\JP $B%j%9%H(B |
\JP $B%j%9%H(B |
\EG list |
\EG list |
@item order |
@item order |
Line 3428 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
Line 3428 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1] |
|
@table @var |
@table @var |
\JP @item return 0 $B$^$?$O(B 1 |
\JP @item return 0 $B$^$?$O(B 1 |
\EG @item return 0 or 1 |
\EG @item return 0 or 1 |
@item plist1, plist2 |
@item plist1 plist2 |
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |